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Abstract—Internet of Things applications require timely ac-
cess to information collected from sensors deployed over large
geographic areas. However, such applications often experience
highly-varying network conditions that prevent the timely deliv-
ery of information updates related to source data from sensors.
Moreover, IoT applications have different metrics of interest and
patterns to request source data. This article explicitly addresses
the timely delivery of information updates in heterogeneous
IoT scenarios with different application-specific goals. For this
purpose, it introduces new metrics based on age of information
(AoI) to accurately describe timeliness of updates in such a
context. Moreover, it analytically derives optimal update gen-
eration policies for different request patterns to minimize the
overall update age in an IoT system and maximize fairness of
updates. Finally, it carries out a thorough performance evaluation
of the proposed policies for representative request patterns with
a real-world dataset of Internet connectivity. The obtained results
demonstrate that the proposed policies are competitive with those
in the state of the art, with a two order of magnitude reduction
in energy consumption and up to a 19.9% higher fairness.

Index Terms—Information freshness; timeliness; data delivery;
Internet of Things; probabilistic modeling

I. INTRODUCTION

Modern applications rely on timely data provided by infor-
mation sources distributed on a large scale and accessed over
the Internet. Representative examples include cyber-physical
systems [1] and different use cases in the Internet of Things
(IoT) ranging from smart energy to intelligent transportation
systems [2]. Information sources are primarily represented by
sensors or servers providing data on their behalf, for instance,
in the cloud or at the edge of the network [3, 4]. Data
requested by applications dynamically change over time, thus,
it is essential that updates are quickly and efficiently delivered
to their destination or client.

Timely data delivery is affected by several factors. A very
important one is freshness, defined by the time at which
the data were generated at the source [5–7]. Age of Infor-
mation (AoI) [8] is one of the most widely used metrics
to characterize freshness and has received large attention in
the literature [9] for diverse scenarios ranging from vehicular
networks and video streaming [10, 11] to energy-harvesting
information sources and IoT applications [12, 13]. However,
freshness alone is not enough to characterize timely data
delivery in IoT scenarios [14]. In fact, it is imperative to also
consider network-specific factors including the delay – namely,
the time taken by a message to traverse the network from
source to destination – and the communication reliability [15].
Both are especially critical for heterogeneous IoT applications

characterized by diverse network conditions and data request
patterns, which depend on different use cases [16].

A large share of the literature has focused on freshness
(Section V). Most works aimed at minimizing the average AoI
experienced in a network [17–20], which is generally assumed
to be under the control of the designer [9]. In contrast, modern
applications have limited to no control on the underlying
communication systems, especially in the Internet. Moreover,
optimizing for AoI has mostly considered strict simplifying
assumptions on the network; as a result, the related solutions
have limited applicability to real-world scenarios [15]. This
is especially true for large-scale IoT deployments charac-
terized by heterogeneous network connectivity and traffic
patterns [21].

This work explicitly addresses these limitations by targeting
timely data delivery for diverse classes of applications in
heterogeneous IoT environments. Different from the state of
the art, it focuses on freshness as experienced by IoT appli-
cations when information updates become available to them.
For this purpose, it introduces novel metrics that accurately
describe timeliness in heterogeneous IoT scenarios by ac-
counting not only for freshness, but also for the network delay
and the communication reliability (Section II). Moreover, it
analytically derives optimal data generation policies for
different request patterns to minimize the overall update
age in an IoT system and maximize fairness (Section III).
Finally, it carries out a thorough performance evaluation of
several data generation policies with a real-world dataset
of Internet connectivity (Section IV). The obtained results
demonstrate that the proposed policies are competitive with
those in the state of the art in terms of update age, with a two
order of magnitude reduction in energy consumption and up
to a 19.9% higher fairness.

II. BACKGROUND

This section first introduces the system model and then
different metrics suitable to characterize timely data delivery
for different classes of IoT applications.

A. System Model

The considered system comprises a server providing up-
dates to a set C = {1, 2, ...,N} of N geographically-
distributed clients (Figure 1). In this context, the server is the
endpoint for accessing information sources such as sensor de-
vices in IoT deployments. Conversely, clients are the software
components of an IoT application which obtain updates from



the (edge or cloud) server over the Internet. Clients experience
different network delays that depend on their location, specif-
ically, their distance from the server. In particular, a client i
experiences a one-way delay di to reach the server. The system
follows a request-response pattern: clients explicitly request
information from the server, which then replies with the
corresponding data. The server makes information available
over time in discrete steps simply referred to as updates.

Different from existing literature [8, 9], we characterize
timeliness as experienced by clients when information updates
become available to them. This entails considering both the
network delay and the message loss probability. Accordingly,
the timeliness associated with an update from the server is
characterized by the effective update age1 at time t, defined
as:

∆i(t) = t−G(t) + di, (1)

where G(t) is the generation time of the last update at the
server. As a consequence, the average update age experienced
by client i is given by:

∆i = lim
T→+∞

1

T

∫ T

0

∆i(t) dt. (2)

Each request by client i may not be correctly received by the
server; such unreliability is characterized in terms of the prob-
ability αi that the corresponding message is correctly received.
The client is assumed to adopt an error recovery mechanism
based on acknowledgments and retransmissions [15]. Specifi-
cally, the server generates a new update as soon as it correctly
receives a re-transmitted request to reduce the update age in
presence of dropped requests [13].

B. Application-specific Age Metrics

The previous discussion characterized the update age as-
sociated with multiple requests sent by an individual client
to the server. The following introduces different metrics that
describe the update age in the entire network according to
application-specific requirements.

We introduce the system update age to characterize the
overall update age based on the instantaneous values of the
individual clients, as:

∆ =
1

N

∑
i∈C

∆iαi + ∆̃i (1− αi) . (3)

The system update age considers all clients as equally con-
tributing to timely information delivery, as long as the corre-
sponding data successfully reaches the server. Indeed, the first
term in the right-hand side of the equation explicitly refers to
this aspect by means of the packet success probability (αi)
introduced in the previous section. Moreover, ∆̃i denotes the
delay experienced by client i when the first request is dropped
and the update is retransmitted; i.e., ∆̃i = 2di + xi, where xi
is a fixed waiting time before the server retransmits the update.

The system update age is defined in terms of the average
values experienced by individual clients. However, the update

1This metric is simply called update age for brevity in the rest of the paper.

Fig. 1: System model.

age of the clients in the system varies: those with a reliable
and low-latency connection receive more timely updates with
respect to the others. Indeed, certain applications are sensitive
to how the update age is spread across the clients [22]. For this
reason, we additionally define the update age fairness based
on Jain’s fairness index [23] as:

σ =

(∑
i∈C ∆iαi + ∆̃i (1− αi)

)2
N
∑
i∈C

(
∆iαi + ∆̃i (1− αi)

)2 , (4)

The value of σ ∈ [0, 1] expresses how the update age is
balanced among all clients, the higher the better. Note that
there is an inherent trade-off between system update age and
fairness. Optimal fairness implies maximizing σ; one option
is to artificially increase the update age experienced by all
the clients to match the highest in the system. This, in turn,
dramatically increases the system update age.

The rest of this article proposes and evaluates policies that
address different requirements of IoT applications, including
to minimize system update age and to maximize fairness.

III. OPTIMAL APPLICATION-SPECIFIC UPDATE AGE

This section analytically derives optimal policies for both
system update age and fairness. For this purpose, a probabilis-
tic characterization is derived next based on the distribution
of the requests from clients. Specifically, the rest of this
section considers special cases of particular interest for the
distributions of the interarrival times, selected to cover a
variety of use cases and according to existing studies [16, 24].
These distributions are: uniform, exponential and normal.

A. Minimizing System Update Age
Let pi(t) denote the probability density function (PDF) for

the interarrival times of requests from client i. The expected
value of update age in the interval [tl, tr] is then given by:

M(tl, tr) =

N∑
i=1

∫ tr

tl

(t− tl + di) pi(t)αi dt (5)

=

N∑
i=1

[∫ tr

tl

tpi(t)dt+ (di − tl) (θi(tr)− θi(tl))

]
αi,



for the case where the last update is generated at time tl,
where θi(t) is the cumulative distribution function (CDF)
corresponding to the PDF pi(t). In other words, Eq. (5)
denotes the expected update age obtained by clients whose
requests arrive in the interval [tl, tr]. Note that the equation
does not exactly correspond to the system update age, as it
does not involve ∆̃i. This makes no difference for the purpose
of the optimization as αi is given, therefore, it is enough to
consider only the first term in Eq. (3) – namely,

∑
i∈C ∆iαi.

Our formulation relies on pi(t) being available at the
server ∀i ∈ C. In practice, such a distribution can be easily
estimated by the server through a statistical test – such as the
Kolmogorov-Smirnov test – after receiving enough requests.

Analytical expressions of M(tl, tr) for the considered dis-
tributions are derived first, then an unconstrained optimization
problem is solved to find the time tr (i.e., tr = Gk(t)) at
which updates must be generated to minimize the expected
update age (minM(tl, tr)) for each distribution.

1) Uniform Distribution: The PDF and CDF for clients
sending requests according to a uniform distribution over an
interval [t−i , t

+
i ] are given by

pui (t) =

{
1

t+i −t−i
, t−i ≤ t ≤ t+i

0, elsewhere

and

θui (t) =


0, t < t−i
t−t−i
t+i −t−i

, t−i ≤ t ≤ t+i

1, t > t+i

,

respectively. Then, it is:

Mu(tl, tr)

=

Nu∑
i=1

[∫ t∗i,+

t∗i,−

t

t+i − t−i
dt+ (di − tl) (θ

u
i (tr)− θui (tl))

]
αi

=

Nu∑
i=1

[
(t∗i,+)

2 − (t∗i,−)
2

2(t+i − t−i )
+ (di − tl) (θ

u
i (tr)− θui (tl))

]
αi

where Nu is the number of clients issuing requests with a uni-
form distribution, t∗i,− = max(tl, t

−
i ), and t∗i,+ = min(tr, t

+
i ).

The following three cases arise:
1) t∗i,+ = t+i and t∗i,− = t−i ∀i ∈ C, i.e., there is a

probability of one that the request from the client arrives
in the interval [tl, tr];

2) t∗i,+ = tr and t∗i,− = tl ∀i ∈ C;
3) t∗i,+ = tr and t∗i,− = t−i ∀i ∈ C.

Clearly, the first case does not depend on tr and can be disre-
garded; moreover, the last two cases are equivalent. Therefore,
we only consider the last one, in which

θui (tr) =
tr − t−i
t+i − t−i

and θui (tl) = 0.

leading to:

Mu(tl, tr) =

Nu∑
i=1

[
t2r − t−i

2

2(t+i − t−i )
+ (di − tl)

(
tr − t−i
t+i − t−i

)]
αi

To minimize the expected update age, we first obtain the
derivative of the previous equation with respect to tr:

∂Mu(tl, tr)

∂tr
=

Nu∑
i=1

[
2tr

2(t+i − t−i )
+

di − tl

t+i − t−i

]
αi

=

Nu∑
i=1

[
tr − tl + di

t+i − t−i

]
αi.

and then setting it to zero, leading to:

tr =

∑Nu

i=1

[
tl−di
t+i −t−i

]
αi∑Nu

i=1
αi

t+i −t−i

(6)

2) Exponential Distribution: For requests whose interar-
rival times follow an exponential distribution, the PDF and
CDF are:

pei (t) = λie
−λit, θei (t) = 1− e−λit,

where λi is the average rate, at which client i sends requests.
Accordingly, the expected update age is given by:

Me(tl, tr) =

Ne∑
i=1

[
tle

−λitl − tre
−λitr

+
(
e−λitl − e−λitr

)(
di +

1

λi

)]
αi (7)

where Ne is the number of clients sending requests according
to an exponential distribution. The derivative of Eq. (7) with
respect to tr is:

∂Me(tl, tr)

∂tr
=

Ne∑
i=1

[
λi (tr + di) e

−λitr
]
αi

For analytical tractability, we approximate2 the term e−λitr

with a second-order Taylor polynomial, leading to:

∂Me(tl, tr)

∂tr
≈

Ne∑
i=1

[
trλi − t2rλ

2
i + λidi − trλ

2
i di
]
αi (8a)

≈ Aet
2
r +Betr + Ce (8b)

where:

Ae = −
Ne∑
i=1

λ2iαi, Be =

Ne∑
i=1

(λi−λ2i di)αi, Ce =
Ne∑
i=1

λidiαi.

Here, tr can be easily found by setting Eq. (8b) equal to
zero and solving the quadratic polynomial.

2Low-order approximation is feasible since λi and tr are both small, i.e.,
in the order of hundreds of milliseconds.



3) Normal Distribution: Finally, requests following a nor-
mal distribution have the following PDF and CDF:

pni (t) =
1

σi
√
2π
e
− 1

2

(
t−µi
σi

)2

, θni (t) =
1

2

[
1 + erf

(
t− µi

σi
√
2

)]
respectively, where µi and σi are the mean and standard
deviation for client i and erf(·) is the error function. In this
case, the expected update age is:

Mn(tl, tr)

=

Nn∑
i=1

[∫ tr

tl

t

σi
√
2π
e
− 1

2

(
t−µi
σi

)2

dt

+
di − tl

2

(
1 + erf

(
tr − µi

σi
√
2

)
− 1− erf

(
tl − µi

σi
√
2

))]
αi

=

Nn∑
i=1

[
σi√
2π

(
e
− 1

2

(
tl−µi

σi

)2

− e
− 1

2

(
tr−µi

σi

)2
)

+
µi + di − tl

2

(
erf
(
µi − tl

σi
√
2

)
− erf

(
µi − tr

σi
√
2

))]
αi

where Nn is the number of clients whose requests have inter-
arrival times following a normal distribution. The derivative
of Mn(tl, tr) with respect to tr is:

∂Mn(tl, tr)

∂tr
=

[
e

1
2

(
tr−µi

σi

)2
[

1√
2π

(
tr−

µi
2

)
+
µi−di−tl
σi
√
2

]]
αi

For analytical tractability, we approximate the exponential

term e
1
2

(
tr−µi

σi

)2

with a first-order Taylor polynomial:

∂Mn(tl, tr)

∂tr
≈

[(
1− 1

2

(
tr − µi
σi

)2
)

(9a)[
1√
2π

(
tr −

µi
2

)
+
µi − di − tl

σi
√
2

]]
αi

≈ Ant
3
r +Bnt

2
r + Cntr +Dn (9b)

where

An = −
Nn∑
i=1

αi

2σ2
i

√
2π

Bn =

Nn∑
i=1

αi

2σ2
i

√
2π

(
2 +

µi
2

+

√
π(µi − di − tl)

σi

)

Cn =

Nn∑
i=1

αi

2σ2
i

√
2π

(
2σ2

i − µi − µ2
i +

2
√
π(µi − di − tl)

σi

)

Dn =

Nn∑
i=1

αi

[
µ3
i

4σ2
i

√
2π

+
µi(µi−di−tl)

2σ3
i

√
2

− µi

2
√
2π

+
µi−di−tl
σi
√
2

]
Then, tr can be found by setting Eq. (9b) equal to zero and
solving the polynomial.

B. Maximizing Update Age Fairness

This section analytically characterizes the maximization of
update age fairness for the considered probability distribu-
tions. That is, we solve maxtr σ, where σ is as in Eq. (4).
The previous section has obtained analytical expressions of

M(tl, tr) =
∑
i∈C ∆iαi for each distribution. Therefore, it is

straightforward to extend such results to the maximization of
σ, as follows. Let us first define the following quantities:

ϕ(tr) =

(∑
i∈C

∆iαi + ∆̃i (1− αi)

)2

=

(
M(tl, tr) +

∑
i∈C

∆̃i (1− αi)

)2

,

ψ(tr) = N
∑
i∈C

(
∆iαi + ∆̃i (1− αi)

)2
.

from which it is

dϕ(tr)

dtr
= 2

[
M(tl, tr) +

∑
i∈C

∆̃i (1− αi)

]
d

dtr
M(tl, tr)

Then,
dσ

dtr
=

dϕ(tr)
dtr

ψ(tr)− dψ(tr)
dtr

ϕ(tr)

ψ(tr)2

The maximum is obtained by solving dσ
dtr

= 0 for tr.
1) Uniform distribution: The derivative of σ is obtained by

using Mu(tl, tr) and d
dtr
Mu(tl, tr) as in Section III-A1 for the

uniform distribution. Solving d
dtr
σ = 0 leads to a polynomial

of order 7. Therefore, the time tr at which new updates need
to be generated is determined by solving such a polynomial
numerically.

2) Exponential distribution: In this case, the expressions
for Me(tl, tr) and d

dtr
Me(tl, tr) derived in Section III-A2 for

the exponential distribution are used. Moreover, the following
approximations are employed for analytical tractability and to
express the optimization problem as a polynomial.

e−λit ≈ 1− λit with t ∈ {tl, tr}.

The obtained eigth order polynomial is solved numerically.
3) Normal distribution: Similarly to previous distributions,

Mn(tl, tr) and d
dtr
Mn(tl, tr) from Section III-A3 for the

normal distribution are used to maximize update age fairness.
Furthermore, the following approximations are used for ana-
lytical tractability:

e
1
2

(
t−µi
σi

)2

≈ 1− 1

2

(
t− µi
σi

)2

,

erf
(
µi − t

σi
√
2

)
≈ 2√

π

(
µi − t

σi
√
2
− 1

3

(
µi − t

σi
√
2

)3
)
,

where t ∈ {tl, tr}. This leads to a polynomial of order 12,
which can be solved numerically.

IV. EVALUATION

The proposed policies for optimal application-specific up-
date age are evaluated next in terms of: system update age,
measured according to Eq. (3); update age fairness, as ex-
pressed in Eq. (4); and energy expenditure, based on the
number of updates generated by the server. The rest of this
section first introduces the considered policies, then details the
simulation setup, and finally presents the obtained results.



A. Considered Policies

This section first introduces optimal policies that minimize
the system update age or maximize fairness. It then presents
simple offline and online algorithms to derive policies that
mitigate the impact of the heterogeneity in the conditions
experienced by clients with respect to the update age.

Minimum system update age (min-sys). The server follows
the policy introduced in Section III-A.

Maximum update age fairness (max-fairness). The server
adopts the policy presented in Section III-B.

As soon as possible (ASAP). The server generates new
data upon receiving a new request and immediately sends
it to the client. Specifically, updates are executed at times
ρi,k : i ∈ C, k ∈ Z+, where ρi,k is the request time of update
k from client i. The server also sends the data at the time they
are generated; as a result, each client experiences an average
update age of exactly di, which is also the best possible value.

Wait for farthest (W4F). The server generates individual
updates for each client such that the update age experienced
by each of them is approximately equal to that of the farthest
client. Let f be such a client, i.e., f = argmaxi∈C di. To this
end, the server first predicts the request time of all clients and
then generates an update per client at a time gi,k such that
ρi,k−gi,k+di ≈ df . Clearly, gf ,k = ρf ,k for all k ∈ Z+. The
request time of all clients is predicted as the mean interarrival
time of the L last requests and taking into account the last
request time. That is, if update k−1 for client i was requested
at time ρi,k−1 and µi is the mean interarrival time of the
client’s requests, then gi,k = ρi,k−1+µi−(df−di). Therefore,
updates are executed at times gi,k : i ∈ C, k ∈ Z+.

Offline-periodic. The server creates updates periodically at
every T time and sends the latest update to each request
received from the clients. Under this policy, updates are
generated at times: t1 + nT : n ∈ Z+ ∪ {0}, where t1 is
the generation time of the first update. This approach does not
aim to minimize the system update age nor maximize fairness;
however, it has been employed as a baseline that does not
depend on the number of requests [25].

Online-cached. The server generates updates every T time
as in the previous case but caches the last m values locally.
Clients located near the server are sent cached updates,
whereas the farthest clients are sent fresher updates. The
cached update is determined based on the one-way delay of the
farthest client f . Specifically, the n-th cached update is sent to
client i, with n ≤ m, if and only if df − T ≤ nT + di ≤ df .
This is a simple policy that attempts to maximize fairness.

B. Simulation Setup

The three distributions introduced in Section III are consid-
ered to model the interarrival times of the requests: uniform,
exponential and normal. The mean for each of them is taken
as a random number between 10 ms and 200 ms, which are
typical values for IoT applications [16, 24]. In particular, two

TABLE I: Simulation parameters.

Parameter Value
Number of clients 400
Round-trip time range [1.4, 290.7] ms
Simulation time 5 min
Time intervals 100 ms
Number of time intervals 3,000
Mean interarrival time range [10, 200]ms
Period T for periodic and cached updates 50 ms

random values are sampled for each client to determine its
lower and upper bounds for the uniform distribution, i.e.,
t−i and t+i in Section III-A1. The exponential distribution is
defined by its mean value, therefore, only one random number
is sampled for each client. Finally, two values are needed for
the normal distribution to completely define it: mean (µi) and
standard deviation (σi). These values are determined per client
by sampling two random numbers in the previously described
range. Then, the mean is taken as the middle point between
them and the standard deviation is set to their difference.

The delay between servers and clients is drawn from a real-
world dataset in [26], which includes round-trip times between
thousands of clients and servers in RIPE Atlas [27] – a global
platform for Internet measurements. The evaluation makes use
of 400 clients and a server located in Richmond, Virginia.
These specific data are used as they include a large number
of clients, cover a wide range of network infrastructure,
and are large enough to provide significant variability in the
network latency. The round-trip times in the considered dataset
range between 1.4 ms and 290.7 ms. Finally, the probability
of packet loss for each client is uniformly chosen between
0 and 0.5 to account for possibly unreliable (e.g., wireless)
connectivity [28].

The experiment runs for a simulated time of 5 minutes
divided into 3,000 intervals of 100 ms. In each interval, the
clients requests are received and the system update age and
fairness are calculated for all the proposed policies. Then, the
mean over all intervals is reported in the evaluation figures
together with error bars representing the standard deviation.
For the periodic and cached policy, a period of T = 50 ms is
used. Table I summarizes the simulation parameters.

C. Obtained Results

This section includes a thorough performance evaluation of
the proposed update age minimization / fairness maximization
schemes for the uniform distribution, and the serving policies
presented in Section IV-A. First, the performance of both sys-
tem update age and fairness is evaluated for every policy and
request distribution. Then, an analysis of energy consumption
of the proposed policies is provided.

System update age. The system update age is shown in Fig-
ure 2a for all serving policies and distributions. Unsurprisingly,
the ASAP approach provides the lowest update age under all
distributions, as it generates updates immediately on receiving
a request. Our proposed min-sys approach achieves similar
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Fig. 2: (a) System update age and (b) update age fairness for all considered serving policies and request distributions in a single-server
scenario. (c) Average period of the update generation under all considered distribution of requests.

system update age under exponential and normal distributions
of the clients requests. Specifically, it only achieves 9.1%
and 4% higher update age for the exponential and normal
distributions, respectively. The online-cached policy provides
a higher update age than the offline-periodic scheme, as it
penalizes the near clients, by sending them cached updates,
instead of the most recent ones. It is clear that, for all
distributions, the W4F and max-fairness policies provide the
highest update age, since they target to equalize the update
age, by attempting to make all clients experience the same
update age as the farthest client. It is important to note that the
standard deviation of the system update age is approximately
equal to that of the requests interarrival times, under the W4F
policy. Since the updates are generated with respect to the
average of the last L received requests per client, the spread
in update age provided by this approach is determined by the
variance of the requests and transmission delay. Similarly, the
max-fairness policy presents a high variance under the normal
distribution, due to the approximations made in Section III-B3
and the high order of the polynomial that needs to be solved
at the server every time a new update is generated.

Update age fairness. The average fairness provided by each
serving policy is presented in Figure 2b, for all distributions
of the clients’ requests. As discussed in Section II, the fairness
is measured with Jain’s fairness index [23] and therefore, the
maximum value is one, which represents the case where all
clients experience exactly the same update age. As expected,
the worst update age fairness is provided by the ASAP
approach, which completely neglects this metric in order to
ensure the smallest system update age, as seen in Figure 2a.

Note that none of the approaches achieve perfect fairness.
This is due to the random one-way delay, which makes it
impossible for the server to schedule updates that provide
the exact same update age to all clients. Interestingly, the
W4F policy is outperformed by the online-cached policy
under the exponential and normal distributions. Moreover,
the online-cached policy slightly outperforms max-fairness
under the normal distribution. This is because the online-
cached policy does not depend on the distribution of the
requests and therefore it achieves similar performance under

all of them. Other approaches that depend on the distribution
of the requests (such as W4F, max-fairness and min-sys)
achieve lower fairness under distributions with higher standard
deviation. Moreover, the trade-off between system update age
and fairness is clearly exhibited by the min-sys and max-
fairness schemes. The first achieves the lowest system update
age under the exponential and normal distributions, at the cost
of low fairness; whereas the latter achieves a very high fairness
for these distributions by introducing a high system update age.

It is important to note that min-sys consistently achieves
better fairness than the ASAP serving policy. In particular,
it achieves 19.9%, 5.9% and 2.5% higher fairness for the
uniform, exponential and normal distribution, respectively.
This shows that a higher fairness can be obtained by consid-
ering upcoming requests from all clients, instead of serving
each client independently. Moreover, the max-fairness policy
achieves lower system update age than the W4F policy under
uniform and normal distributions, which also shows the benefit
of considering all upcoming requests.

Energy consumption. The energy consumption of the pro-
posed min-sys and max-fairness serving policies is evaluated
as the number of updates generated by the server, as commonly
adopted in the literature [25]. In the following, we consider
the average period of the updates – namely, the number of
updates normalized with respect to time – as it is independent
from the amount of requests at the sources.

Specifically, Figure 2c shows the average period of the
proposed min-sys and max-fairness policies compared to that
of the offline-periodic and ASAP policies. Interestingly, the
max-fairness policy presents the lowest energy consumption
under the exponential and normal distributions of requests.
This shows how this approach aims to maximize fairness by
sending old data to the clients. On the other hand, the ASAP
policy incurs the highest energy consumption, as it generates
updates every time a new request is received. However,
the min-sys scheme saves more energy under the uniform,
exponential and normal distributions. In particular, the min-
sys and max-fairness policies approach the average period
of the offline-periodic policy under the uniform distribution,
since such a distribution is bounded in time; therefore, the



min-sys and max-fairness schemes are able to consider the
whole time slot during which requests are expected. Thus,
updates are created accordingly, resulting in a similar update
period as the one created by the offline-periodic policy. This
entails a similar system update age and fairness for such
approaches, as seen in Figures 2a and 2b. The min-sys policy
achieves two and one orders of magnitude higher average
period than the ASAP policy under the exponential and normal
distributions, respectively. Moreover, the system update age
achieved by the min-sys approach under such distributions is
very similar to that of ASAP, while also achieving slightly
higher fairness, as shown by Figures 2a and 2b, respectively.
This shows that the proposed approach outperforms the typical
ASAP scheme in terms of fairness and energy consumption,
by leveraging requests that follow exponential and normal
probability distributions.

Summary. The presented results show that the proposed min-
sys serving policy obtains a system update age that is similar
to ASAP, while saving energy and achieving higher fairness.
Min-sys is especially beneficial for applications where the
interarrival time of the requests follow an exponential or
a normal probability distribution. On the other hand, the
proposed max-fairness policy achieves a high fairness by
sporadically generating updates, which results in an increased
update age at the clients. Such a behavior is expected, due to
the unconstrained optimization method employed. However,
the best trade-off between system update age and update age
fairness is provided by the online-cached approach. Such a
policy does not depend on the distribution of the requests,
thus, it is also ideal for most types of applications. More-
over, online-cached does not generate more updates than the
commonly used offline-periodic scheme, therefore, the energy
consumption at the server is minimal.

V. RELATED WORK

Most approaches to optimize timely data delivery target
minimizing the average AoI experienced in a network [29, 30],
whereas some works address fairness. Among them, Han
et al. [31] consider resource scheduling in wireless systems
using orthogonal frequency division multiple access that can
account for incomplete knowledge on the system. Yang et
al. [32] leverage proportional fairness to maximize AoI in the
context of content provisioning with unmanned aerial vehicles.
Different from all these works, we devise metrics based
on update age which characterize timely data delivery for
different classes of applications, including fairness. Moreover,
we obtain optimal update generation policies for these metrics
for diverse request patterns that correspond to realistic use
cases.

Optimal policies have also been considered in the context of
content caching [30, 33]. Specifically, Tang et al. [33] devise
an update policy that minimizes AoI for time-varying content
with a certain popularity distribution. Furthermore, Bastopcu
and Ulukus [30] consider a system with one information
source, a cache, and end users; they analytically characterize

such a system to obtain optimal policies for content updates.
In contrast, this work devises policies that do not rely on
intermediate caches, but take advantage of the heterogeneity
inherent in IoT applications.

There is also a significant share of work explicitly address-
ing AoI in the specific context of the IoT [25, 34, 35]. Several
solutions target energy-harvesting devices [10, 36–40], which
heavily rely on dynamic and potentially unpredictable environ-
mental conditions. In contrast, we are not restricted to such
a specific use case but propose policies that rather depend on
different application-specific age metrics and request patterns.

Some research explicitly considers systems with multiple
sources or clients [29, 30, 35, 41, 42]. In doing so, they
rely on strong assumptions on how the different elements are
distributed, generally close to each other. Instead, we consider
IoT deployments that are possibly scattered over large geo-
graphical areas, resulting in highly-varying network conditions
due to the location of the devices and their communication
technologies. Moreover, we evaluate our proposed solution by
using a real-world data set of Internet connectivity.

Our work also significantly distinguishes itself from the
state of the art in that it does not assume any form of control
on the underlying network infrastructure. In fact, most of the
above-mentioned solutions require access to the queues in the
network elements [9]. This implies that network operators
grant application designers access to their infrastructure for
improving timeliness, which is unfeasible in the context of
the IoT. In contrast, the policies presented here are applicable
to diverse application scenarios as they require no control over
the underlying network infrastructure.

VI. CONCLUSION

This article has introduced an accurate model to describe
timely delivery of information in heterogeneous IoT scenarios
along with age-based metrics that characterize the goals of
different application classes. Then, it has analytically derived
optimal policies that minimize the system update age and
maximize update age fairness for diverse types of request
patterns corresponding to realistic use cases. A performance
evaluation based on a large-scale Internet dataset demonstrated
that the proposed policies achieve timely data delivery that is
competitive with those in the state of the art, while consuming
up to 100 times less energy due to a more efficient generation
of the updates. Moreover, they achieve up to 19.9% higher
update age fairness, which is beneficial to applications re-
quiring balancing update age. As a future work, the model
could be extended to account for different distributions of
the network delays and message losses. Moreover, a multi-
objective optimization problem could be formulated to jointly
account for update age, fairness, and energy consumption.
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From Using the RIPE Atlas Platform for Measurement Research,”
ACM SIGCOMM CCR, 2015.

[28] O. Ayan, H. Murat Gürsu, A. Papa, and W. Kellerer, “Probability
analysis of age of information in multi-hop networks,” IEEE
Networking Letters, vol. 2, no. 2, pp. 76–80, 2020.

[29] Q. Jing, X. Wang, P. Zhou, K. Liu, and W. Wu, “Minimizing the
age of multisource information with budget constraint in Internet
of Things,” IEEE Internet of Things Journal, vol. 9, no. 8, pp.
6173–6183, 2022.

[30] M. Bastopcu and S. Ulukus, “Cache freshness in information
updating systems,” in CISS, 2021.

[31] B. Han, Y. Zhu, Z. Jiang, M. Sun, and H. D. Schotten, “Fairness for
freshness: Optimal age of information based OFDMA scheduling
with minimal knowledge,” IEEE Transactions on Wireless Com-
munications, vol. 20, no. 12, pp. 7903–7919, 2021.

[32] P. Yang, K. Guo, X. Xi, T. Q. S. Quek, X. Cao, and C. Liu, “Fresh,
fair and energy-efficient content provision in a private and cache-
enabled UAV network,” IEEE Journal of Selected Topics in Signal
Processing, vol. 16, no. 1, pp. 97–112, 2022.

[33] H. Tang, P. Ciblat, J. Wang, M. Wigger, and R. Yates, “Age of
information aware cache updating with file- and age-dependent
update durations,” in WiOpt, 2020.

[34] B. Zhou and W. Saad, “Optimal sampling and updating for min-
imizing age of information in the internet of things,” in IEEE
GLOBECOM, 2018.

[35] M. A. Abd-Elmagid and H. S. Dhillon, “Distribution of AoI
in EH-powered multi-source systems with source-aware packet
management,” in IEEE ICC, 2022.

[36] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of in-
formation under energy replenishment constraints,” in Information
Theory and Applications Workshop (ITA), 2015.

[37] Y. Sun, E. Uysal-Biyikoglu, R. Yates, C. E. Koksal, and N. B.
Shroff, “Update or wait: How to keep your data fresh,” in IEEE
INFOCOM, 2016.

[38] T. Bacinoglu and E. Uysal-Biyikoglu, “Scheduling status updates
to minimize age of information with an energy harvesting sensor,”
in IEEE ISIT, 2017.

[39] X. Wu, J. Yang, and J. Wu, “Optimal status update for age
of information minimization with an energy harvesting source,”
IEEE Trans. on Green Communications and Networking, 2018.

[40] S. Feng and J. Yang, “Optimal status updating for an energy har-
vesting sensor with a noisy channel,” IEEE INFOCOM WKSHPS,
2018.

[41] N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. An-
gelakis, “Age of information of multiple sources with queue
management,” in IEEE ICC, 2015.

[42] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-
optimal sampling and transmission scheduling in multi-source
systems,” in ACM MobiHoc, 2019.


