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Abstract—Recent advancements in virtualization and software
architecture have led to the new paradigm of serverless comput-
ing, which allows developers to deploy applications as stateless
functions without worrying about the underlying infrastructure.
Accordingly, a serverless platform handles the lifecycle, exe-
cution and scaling of the actual functions; these need to run
only when invoked or triggered by an event. Thus, the major
benefits of serverless computing are low operational concerns
and efficient resource management and utilization. Serverless
computing is currently offered by several public cloud service
providers. However, there are certain limitations on the public
cloud platforms, such as vendor lock-in and restrictions on the
computation of the functions. Open source serverless frameworks
are a promising solution to avoid these limitations and bring
the power of serverless computing to on-premise deployments.
However, these frameworks have not been evaluated before. Thus,
we carry out a comprehensive feature comparison of popular
open source serverless computing frameworks. We then evaluate
the performance of selected frameworks: Fission, Kubeless and
OpenFaaS. Specifically, we characterize the response time and
ratio of successfully received responses under different loads and
provide insights into the design choices of each framework.

Index Terms—serverless computing, function-as-a-service,
Kubeless, Fission, OpenFaaS, performance evaluation
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I. INTRODUCTION

Serverless computing is an emerging paradigm wherein soft-
ware applications are decomposed into multiple independent
stateless functions [1, 2]. Functions are only executed in re-
sponse to triggers (such as user interactions, messaging events
or database changes), and can be scaled independently as they
are completely stateless. Hence, serverless computing is also
sometimes referred to as function-as-a-service (FaaS) [3]. In
this approach, almost all operating concerns are abstracted
away from developers. In fact, developers simply write code
and deploy their functions on a serverless platform [4]. The
platform then takes care of function execution, storage, con-
tainer infrastructure, networking, and fault tolerance. Addition-
ally, the serverless platform takes care of scaling the functions
according to the actual demand. Serverless computing has been
identified as a promising approach for several applications,
such as those for data analytics at the network edge [5, 6],
scientific computing [7] and mobile computing [8].

In serverless computing, the infrastructure is generally man-
aged by a third-party service provider or an operations team
when using a private cloud. Currently, all major cloud service
providers offer solutions for serverless computing, namely,
Amazon Web Services (AWS) Lambda, Azure Functions, IBM

Cloud Functions and Google Cloud Functions. However, these
platforms require the functions to be written in a certain way,
resulting in vendor lock-in [2, 9]. Moreover, developers have
to rely on the serverless provider’s release cycle and additional
services from the cloud platform such as message queuing and
data storage. They also have to comply with constraints on
function code size, execution duration and concurrency [10].

Open source FaaS frameworks are a promising solution to
bring the power of serverless computing on-premise. Such
frameworks provide more flexibility (for deploying applica-
tions, configuring the framework, etc.) and thereby avoid
vendor lock-in. For instance, open source frameworks can be
deployed both on the edge/fog devices as well as on the public
cloud for distributed data analytics [5, 6]. In this regard, a
serverless framework should be easy to set up, configure and
manage; it should also provide certain performance guarantees.
Although recent works have focused on serverless platforms in
the public cloud [10, 11], none has evaluated open source FaaS
frameworks. In contrast, this work provides a comprehensive
feature comparison of popular open source serverless frame-
works, namely, Kubeless [12], OpenFaaS [13], Fission [14]
and Apache OpenWhisk [15]. Furthermore, it evaluates the
performance (in terms of response time and ratio of successful
responses) of these frameworks under different workloads and
provides insights into the design choices behind them. It finally
examines the impact of auto scaling on performance.

The rest of the article is organized as follows. Section II de-
scribes the considered frameworks and analyzes their features.
Section III evaluates the performance of selected frameworks.
Section IV reviews the related work. Finally, Section V pro-
vides concluding remarks as well directions for future work.

II. OPEN SOURCE SERVERLESS COMPUTING FRAMEWORKS

This section describes four popular open source serverless
frameworks, namely, Fission, Kubeless, OpenFaaS and Open-
Whisk. We chose frameworks with at least 3,000 GitHub stars
(a mark of appreciation from users). Table I summarizes their
features. All the considered frameworks run each serverless
function in a separate Docker container to provide isolation.
OpenFaaS, Kubeless and Fission utilize a container orchestra-
tor to manage the networking and lifecycle of the containers,
whereas OpenWhisk may be deployed with or without an
orchestrator. We present a short summary of the frameworks,
highlighting their main components.

Fission is an open source serverless computing framework
built on top of Kubernetes and using many Kubernetes-native



Feature Kubeless OpenWhisk Fission OpenFaaS

Open source license Apache 2.0 [12] Apache 2.0 [15] Apache 2.0 [14] MIT [13]
Framework
development language

Go Scala Go Go

Programming
languages supported

Python, Node.js, Ruby,
PHP, Go, Java, .NET and
custom containers [16]

Javascript, Swift,
Python, PHP, Java,
Linux binaries
(including Go) and
custom containers [17]

Python, Node.js, Ruby,
Perl, Go, Bash, .NET,
PHP and custom con-
tainers [18]

Python, C#, Go, Node.js,
Ruby and custom con-
tainers [19]

Auto scaling metric CPU utilization, QPS
and custom metrics [20]

QPS CPU utilization [21] CPU, QPS and custom
metrics [22]

Container
orchestrator

Kubernetes No orchestrator
required, Kubernetes
supported [23]

Kubernetes Kubernetes [24],
Docker Swarm [25],
extendable to other
orchestrators [26]

Function triggers http, event, schedule [27] http [28], event [29],
schedule [30]

http, event, schedule [31] http [32], event [33]

Message queue
integration

Kafka, NATS [34] Kafka [35] NATS, Azure stor-
age queue [31]

NATS [33], Kafka [36]

Recommended
monitoring tool

Prometheus [37] statsd Istio [38] Prometheus [39]

CLI support Yes Yes Yes Yes
Industry support Bitnami IBM, Adobe, RedHat,

Apache Software Foun-
dation among others

Platform9 VMWare [40]

GitHub stars 3,009 [12] 3,303 [15] 3,412 [14] 10,608 [13]
GitHub forks 273 [12] 629 [15] 277 [14] 767 [13]
GitHub contributors 61 [12] 120 [15] 65 [14] 68 [13]

TABLE I: Overview of features.

concepts [14]. The framework executes a function inside
an environment that contains a webserver and a dynamic
language-specific loader required to run the function [18]. An
executor controls how function pods are created and scaled.
One of the main advantages of Fission is that it can be
configured to run a pool of “warm” containers so that requests
are served with very low latencies [41].

Kubeless is a Kubernetes-native serverless framework [12].
It uses Custom Resource Definitions (CRDs) [42] to extend the
Kubernetes API and create functions as custom objects. This
allows developers to use the native Kubernetes APIs to interact
with the functions as if they were native Kubernetes objects.
The language runtime is packaged in a container image.
The Kubeless controller continuously watches for changes
to function objects and takes necessary action. For instance,
if a function object is created, the controller creates a pod
for the function and cleans up resources when the function
object is deleted. A function’s runtime is encapsulated in a
container image and Kubernetes configmaps1 are used to inject
a function’s code in the runtime.

OpenFaaS is an open source serverless framework for
Docker and Kubernetes [13]. The OpenFaaS CLI is used to
develop and deploy functions to OpenFaaS. Only the function

1https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
configmap/

and handler has to be supplied by the developer, and the
CLI handles the packaging of the function into a Docker
container. The container comprises a function watchdog, i.e.,
a webserver that acts as an entry point for function calls
within the framework. An API gateway provides an external
interface to the functions, collects metrics and handles scaling
by interacting with the container orchestrator plugin.

OpenWhisk is an open source, serverless computing frame-
work initially developed by IBM and later part of the Apache
Incubator project [15]. It is also the underlying technology of
the Cloud Functions FaaS product on IBM’s public cloud. The
OpenWhisk programming model is based on three primitives:
Action, Trigger and Rule [8]. Actions are stateless functions
that execute code. Triggers are a class of events that can
originate from different sources. Rules associate a trigger with
an action. The scalability of functions is directly managed by
the OpenWhisk controller.

III. EVALUATION

We evaluate the performance of Fission, Kubeless and
OpenFaaS when deployed on a Kubernetes cluster. We choose
Kubernetes as it is the only orchestrator supported by all
the considered frameworks. We do not include OpenWhisk
due to issues faced in setup and its minimal dependence on
Kubernetes for orchestration tasks (the interested reader may
refer to [43] for a performance evaluation of OpenWhisk).
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Fig. 1: Median response time for each serverless framework with (a) 1 replica, (b) 25 replicas, and (c) 50 replicas.

This section first describes the experimental setup. Then it
discusses the impact of the workload and auto scaling on the
framework performance. Finally, it provides a summary of the
observations from the results.

A. Experimental setup

We run the experiments on Google Kubernetes En-
gine (GKE)2. The deployment on GKE is similar to one on a
custom Kubernetes cluster deployed on virtualized instances.
The serverless framework interacts directly with the Kuber-
netes cluster manager. We use Kubernetes version 1.10.4-
gke.2 (the latest version available at the time of writing)
to set up a cluster with three worker nodes. Each worker
node has 2 vCPUs, 7.5 GB RAM and runs the Container-
Optimized OS. The cluster is setup in the europe-north1 region
and all nodes are located within the same zone to minimize
the network latency they experience. Unless otherwise stated,
we deployed each framework with the default settings in
the respective installation guide. We set up Fission version
0.8.0 and use the newdeploy executor [41] as it supports auto
scaling of functions. We use Kubeless version 1.0.0-alpha.6
and the Nginx Ingress controller to provide routing to the
functions. The OpenFaaS installation consists of the following
components: gateway (v0.7.9), faas-netes (v0.5.1), Prometheus
(v2.2.0), alert manager (v0.15.0-rc.0), queue worker (v0.4.3)
and faas-cli (v0.6.9). The HTTP watchdog mode is used as
this will be the default mode of OpenFaaS in the future.

We use the Apache Benchmark (ab) tool3 to generate HTTP
requests that invoke the functions deployed on each frame-
work. We run the ab tool on a virtual machine (VM) located
in the same zone as the Kubernetes cluster, again, to minimize
network latency. The VM has 2 vCPUs, 7.5 GB RAM and runs
Debian GNU/Linux 9.4 (stretch) OS. We configure the ab tool
to send 10,000 requests with different levels of concurrency
(1, 5, 10, 20, 50 or 100 concurrent requests). The concurrency
level affects the number of requests received simultaneously
by the framework. We carry out the experiments according to

2https://cloud.google.com/kubernetes-engine/
3https://httpd.apache.org/docs/2.4/programs/ab.html

the independent replication method with at least 5 iterations
to achieve adequate statistical significance.

B. Impact of concurrent users

First, we measure the average response time and the ratio
of successfully received responses under different levels of
concurrent requests. Our aim is to isolate any performance
issues due to the architecture of the framework itself. To this
end, we write a simple function in Go that takes a string as
input and sends the same string as the response. We choose
this function to have minimal overhead in terms of the function
logic and its dependencies. We deploy the function on each
framework and invoke it through HTTP. We disable auto
scaling and run a fixed number of function replicas (1, 25
or 50) in each experiment. By doing so, we avoid possible
increases in response times when scaling out functions, i.e.,
when creating new function pods/containers. We repeat each
experiment 10 times to improve the accuracy of the results.

Figure 1 shows the median response time across all it-
erations (i.e., 100,000 requests in total) for the different
frameworks. The lowest median response time is achieved by
Fission, with values around 2 ms in all scenarios. We observe
that Kubeless and OpenFaaS maintain a response time below
80 ms across all scenarios. We also note that the response times
do not show a significant change as the number of function
replicas increases. In fact, functions deployed on Kubeless
with 50 replicas for 100 concurrent requests obtain a response
time slightly higher (by around 10 ms) than that with fewer
function replicas. This indicates that it is possible to serve all
requests for such a simple function with just one replica.

A closer examination of the results reveals that the response
times for Fission have a significant number of outliers as the
concurrency of requests increases over 50. In this respect,
Figure 2 shows the response times (on log scale) for 100
concurrent requests and one function replica for the three
frameworks. OpenFaaS and Kubeless perform quite similarly
and all responses are received within 400 ms. On the other
hand, for Fission there are several outliers: 1,336 responses
take more than 1 s and the longest response time goes up
to 20 s. The large number of outliers for Fission pushes its
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Fig. 2: Response time with one function
replica and 100 concurrent requests.

Framework Repl. Number of concurrent users
1 5 10 20 50 100

1 100.00 100.00 100.00 100.00 100.00 100.00
Kubeless 25 100.00 100.00 100.00 100.00 100.00 100.00

50 100.00 100.00 100.00 100.00 100.00 100.00
1 100.00 99.90 99.84 99.78 99.54 99.32

Fission 25 100.00 99.89 99.85 99.77 99.48 99.19
50 100.00 99.88 99.81 99.79 99.61 99.31
1 99.95 99.99 99.91 99.58 98.73 98.27

OpenFaaS 25 100.00 100.00 99.92 99.67 97.76 96.04
50 100.00 100.00 99.93 99.61 97.48 96.52

TABLE II: Success ratio (in %) of all requests for different serverless frameworks.
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Fig. 3: Median response time as a function of time during auto scaling for (a) Fission, (b) Kubeless, and (c) OpenFaaS.

average response time to 176 ms, whereas this behavior is
not seen for OpenFaaS (74 ms) or Kubeless (79 ms). We also
observe the same in other experiments with lower concurrency
of requests and for higher number of function replicas. Thus,
the performance of Fission deteriorates at high workloads
regardless of the number of function replicas. We attribute this
to the router component of Fission that forwards all incoming
HTTP requests to the appropriate function. This component
becomes a bottleneck as the workload increases. On the other
hand, Kubeless relies on native Kubernetes components as
far as possible: it utilizes the Kubernetes Ingress controller
to route requests and balance the load. This component is at a
more mature state, having been supported by Kubernetes since
version 1.1 (available in 2015).

Next, we examine the ratio of successful responses for
different levels of concurrency and number of function replicas
(Table II). The table reports the success ratio over all ten
iterations of the experiment. As the functions are invoked via
HTTP, we consider any response without a 2xx response code
as a failed request. We observe that Kubeless obtains the best
performance with a 100% success ratio across all experiments,
i.e., all HTTP responses were successfully received. Fission
also manages to keep the success ratio at above 99% even at
higher levels of concurrency. However, we observe that the
success ratio of OpenFaaS drops to 98% or below when the

number of concurrent requests is 50 or more. Furthermore,
the success ratio is higher when only one function replica
is present. This trend was seen consistently across multiple
runs. We attribute this to the architecture of OpenFaaS wherein
every function call has to go through multiple steps, resulting
in many different points of failure. For instance, the HTTP
requests and responses need to be processed by the gateway,
faas-netes and the watchdog. Hence, the gateway and faas-
netes can become bottlenecks (due to design or engineering
issues) when the rate of incoming requests is high.

C. Impact of auto scaling

We now examine the impact of auto scaling on the re-
sponse time and the ratio of successfully received responses.
We choose to scale functions based on CPU utilization as
Fission supports only this scaling metric. Accordingly, we
consider a CPU-intensive function (in Go) that multiplies a
1,000 by 1,000 matrix on each invocation. This allows us
to reach the CPU utilization threshold faster than with the
previous function. We start each iteration of the experiment
with a single function replica and set the threshold for CPU
utilization at 50%. This implies that a CPU utilization exceed-
ing 50% should trigger the creation of more function replicas.
All frameworks use the Kubernetes Horizontal Pod Autoscaler
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Fig. 4: CDF of response time (in milliseconds) with auto
scaling enabled for each serverless framework.

(HPA)4 to perform scaling based on CPU utilization [20–22].
We use the ab tool to send 10,000 requests with 10 concurrent
users and repeat each experiment 5 times.

All the frameworks leave the scaling decisions to the Ku-
bernetes HPA. However, we notice that the ratio of successful
responses and the distribution of response times varies between
frameworks. Both Kubeless and OpenFaaS have a 100%
success ratio across all experiments, whereas the success ratio
for Fission is at 98.11%. Next, Figure 4 shows the distribution
of response times over all the experiment runs. The median
response time of OpenFaaS (1.1 s) is higher than the other
two frameworks. Although Kubeless and Fission maintain a
lower median response time (288 ms), the outliers reach a
significantly higher value (up to 7 s). In fact, 50 responses
(0.1%) took more than 3 seconds for Kubeless, whereas the
occurrence of such outliers for other frameworks is below 5.

Next, we examine the variation of response time during
a single iteration of the experiment. Accordingly, Figure 3
reports the values obtained by grouping all responses with
a granularity of one second: their median response time as
a solid line, as well as the corresponding minimum and
maximum values as a gray band. In all cases, the median
response initially lies between 1 s to 1.5 s. Both Kubeless and
Fission are able to scale more replicas at approximately after
100 s of the experiment and thus, we see a reduced response
time. However, Kubeless is able to maintain the low response
time for a longer duration, whereas in the case of Fission the
response time increases again after 260 s of the experiment run.
OpenFaaS triggers a scaling request only after 200 s seconds
of the experiment. We also note that the total duration of
the experiment takes longer for OpenFaaS as the response
time is quite high. This is because the ab tool waits for a
response before sending more requests and the experiment
only completes when all 10,000 requests have been sent.

D. Discussion

Our experimental results show that Kubeless has the most
consistent performance across different scenarios. We attribute
this to its simple architecture, the use of native Kubernetes

4https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

components and its maturity. In fact, Kubeless has a version
1.0-alpha release whereas the other considered frameworks
are at versions below 1.0. Clearly, all frameworks are under
active development and are evolving rapidly. Nevertheless,
our work is a first important step towards benchmarking the
performance of serverless frameworks. Moreover, we note that
some tuning is still required to achieve adequate performance,
although serverless frameworks are expected to abstract away
all scaling concerns from the developers [9]. With a simple
“hello world” function, Kubeless and OpenFaaS maintain a
low median and average response time below 80 ms. For
more CPU-intensive functions, such as in the auto scaling
experiments, the serverless framework itself may need to be
scaled as well to avoid bottlenecks in individual components.

IV. RELATED WORK

Serverless computing is receiving increasing attention in
the academia [2, 7, 10, 43, 44]. Baldini et al. [2] summarize
the general features of serverless platforms and describe open
research problems in this area. Lynn et al. [10] present a
feature analysis of seven enterprise serverless computing plat-
forms, including AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions and OpenWhisk. Lee et al. [11]
evaluate the performance of public serverless platforms by
invoking CPU, memory and disk-intensive functions. They
find that AWS Lambda outperforms other public cloud solu-
tions. Furthermore, the authors highlight the cost-effectiveness
of running functions on serverless platforms as compared to
running them on traditional VMs. The authors also present a
feature comparison of the public serverless platforms. Lloyd
et al. [44] investigate the performance of functions deployed
on AWS Lambda and Microsoft Azure Functions. They focus
on the impact of infrastructure provisioning on public cloud
platforms and identify variations in the functions’ performance
depending on the state (cold or warm) of the underlying VM
or container. McGrath and Brenner [45] develop a prototype
serverless platform implemented in .NET and using Windows
containers for executing functions. The authors compare the
performance of their prototype platform to AWS Lambda,
Google Cloud Functions, Azure Functions and OpenWhisk.
Shillaker [43] evaluates the response latency on OpenWhisk
at different levels of throughput and concurrent functions. The
author identifies research directions for improving start up time
in serverless frameworks by replacing containers with a new
isolation mechanism in the runtime itself. However, none of
the works specifically address open source serverless platforms
(Fission, Kubeless, OpenFaaS).

V. CONCLUSION

This article analyzed the status of open source serverless
computing frameworks. First, we carried out a comprehensive
feature comparison of the most popular frameworks, Fission,
Kubeless, OpenFaaS and OpenWhisk. Based on that, we found
that OpenFaaS has the most flexible architecture with support
for multiple container orchestrators and easy extendability.
Next, we evaluated the performance of Fission, Kubeless and



OpenFaaS deployed on a Kubernetes cluster. Specifically, we
characterized the response time and success ratio for functions
deployed on these frameworks. We found that Kubeless has the
most consistent performance across different scenarios. How-
ever, all frameworks are under active development and changes
are expected before the alpha release of each framework. As
future work, we aim at analyzing the suitability of serverless
computing for resource-constrained edge devices.
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