
Design and Implementation of a Distributed
Mobility Management Entity on OpenStack

Gopika Premsankar, Kimmo Ahokas and Sakari Luukkainen
Department of Computer Science

Aalto University, Finland
Email: {gopika.premsankar, kimmo.ahokas, sakari.luukkainen}@aalto.fi

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/CloudCom.2015.54

Abstract—Network Functions Virtualization (NFV) consists
of implementing network functions as software applications
that can run on general-purpose servers. This paper discusses
the application of NFV to the Mobility Management Entity
(MME), a control plane entity in the Evolved Packet Core
(EPC). With the convergence of cloud computing and mobile
networks, conventional architectures of network elements need
to be re-designed in order to fully harness benefits such as
scalability and elasticity. To this end, we design and implement a
distributed MME with the three-tier architecture common to web
applications. We deploy the components of the distributed MME
on two separate OpenStack clouds and evaluate the latency of the
attach procedure. We find that the placement of the components
within the data center significantly affects the attach latency.

I. INTRODUCTION

The mobile core network today comprises proprietary hard-
ware equipment that is designed to meet high performance
requirements. Upgrading or expanding the network demands
investment in expensive hardware and the deployment process
is slow and cumbersome [1]. Network Functions Virtualization
(NFV) employs standard IT virtualization technologies to
enable mobile network operators to deploy network func-
tions on a cloud computing infrastructure. Operators can then
rapidly scale their networks to meet the growing demand for
mobile data [2] and simultaneously reduce their expenditure in
proprietary hardware. This paper focuses on the virtualization
of the Mobility Management Entity (MME), a key control
plane element in the Evolved Packet Core (EPC).

The MME is an ideal candidate for virtualization. It is
purely a control plane element and, hence, it does not need
any specialized packet forwarding hardware. Furthermore, in
present-day networks, signaling traffic is growing rapidly due
to continuous keep-alive messages generated by smartphones
and emerging machine-to-machine applications [3]. An MME
deployed on the cloud can employ virtually infinite computing
resources to handle this load. Moving the MME software as-
is to the cloud, however, does not allow the MME to fully
leverage the benefits of cloud computing [4]. When standalone
virtual MMEs (vMME) are deployed to handle increased
network load, each newly created vMME has to be configured
with EPC-specific parameters. Also, other network elements
(such as eNodeBs) have to be informed about the existence
of this new MME. Furthermore, once the vMMEs are serving
subscribers, they maintain information about active subscribers

in their local storage. In case a vMME is no longer required,
for instance, due to reduced subscribers, the vMME cannot be
simply shut down as active sessions will be affected.

Taking these issues into consideration, we design and imple-
ment a three-tier architecture for the vMME. This corresponds
to the 1:N mapping defined in [4]. This architecture consists
of three components: a front end (FE), one or more workers
and a state database. The FE behaves as an intelligent proxy
and maintains interfaces to other EPC elements. The workers
are responsible for the actual functional processing in handling
user mobility and sessions. User state information (referred to
as UE context) is stored in the state database, thereby making
the workers stateless. With this design, the workers and state
database are transparent to external network entities. Thus,
the workers can be easily scaled out or scaled in depending
on network load without the need to inform other network
elements. Furthermore, the vMME is resilient to the failure
of workers as the UE context is saved on the state database.
Any worker with access to this information can take over the
processing in case of failures.

However, de-constructing the MME architecture results in
increased latency for EPC procedures. All messages between
external network elements and the workers incur an extra hop
as they have to be forwarded through the FE. Storing the UE
context in the state database requires additional messaging
which also contributes to the increase in latency. This paper
quantifies this increase in latency for the E-UTRAN initial
attach procedure by comparing the distributed design to that
of a standalone MME. We also investigate how placement of
the distributed MME components within the data center affects
the attach latency.

The rest of the paper is organized as follows. Section II
discusses the related research literature. Section III details
the functionality of the components of the distributed vMME.
Section IV describes the testbed and presents the results of
the experiments performed. Finally, Section V provides some
concluding remarks.

II. RELATED WORK

Virtualization of network elements in the EPC and IP
Multimedia Subsystems (IMS) are active areas of research.
Distributed architectures for the MME have been presented
in [5], [6]. Our three-tier architecture for the MME is similar
to the one presented in [5]. However, while the authors of [5]

https://doi.org/10.1109/CloudCom.2015.54


have focused on scaling operations, we rather evaluate the
latency during attach procedures with a distributed vMME.
Furthermore, we compare the performance of the distributed
vMME to that of a standalone vMME [5]. The distributed
MME in [6] consists of stateless message processors organized
in a distributed hash table with an external user state storage
system. In this case, migration to another MME is possible
only when the UE is in the idle state. When the UE is in the
active state and attached to one MME, if a network event for
that UE reaches another MME instance, the request has to be
forwarded to the correct MME. In our design, instead, these
additional redirections are not required and the state migration
can also occur while the user is active.

In addition to the MME, research literature describes similar
distributed design for the IMS. An elastic core architecture
is described in [7], which separates state processing for
virtualized network functions from the state information stored
in a database. Software-defined networking is used to flexibly
allocate new resources for virtualized elements. The authors
further analyze the application of this architecture to a virtu-
alized IMS. Clearwater [8] is an open-source implementation
of IMS designed to run on the cloud. In this design, long
term state information is moved out of the processing nodes
to an external data store. The authors of [9] discuss different
software architectures for efficient virtualization of the IMS.

III. DESIGN AND IMPLEMENTATION OF THE VMME

We re-design the MME software developed in [10] to realize
a 1:N mapping. Fig. 1 shows an overview of the system
with the vMME’s new architecture. The three tiers (i.e., FE,
workers and state database) collectively represent a single
MME to external elements such as the eNodeB, Serving
Gateway (SGW) and PDN Gateway (PGW). Our system also
includes an OpenStack load balancer which is responsible for
creating and deleting worker VMs on OpenStack. We now
describe the functionality of each tier.

A. Front End

The main functions of the front end (FE) are the following:
1) Maintain 3GPP standardized interfaces towards other

EPC network elements. In our system, the FE only
maintains an S1-MME interface towards eNodeBs and
an S11 interface towards SGWs.

2) Balance requests between worker nodes. Our FE design
employs a simple round-robin load balancing scheme to
distribute new requests to worker nodes.

3) Inform the OpenStack load balancer when new workers
are required to be created or deleted.

To realize the first two functions, the FE needs to correctly
forward S1 Application Protocol (S1AP) messages between
workers and eNodeBs, and GPRS Tunneling Protocol (GTP)
messages between workers and SGWs. The FE maintains a
mapping for each UE, which associates the UE to the worker,
eNodeB and SGW responsible for handling the user session.
The FE determines the UE identity based on information
elements present in the message to be forwarded. To realize the

State database

Worker Worker Worker

Front end

MME

Collocated

SGW and PGW
Internet

OpenStack

load balancer
eNodeB

UE

S1-MME

S1-U S11

Fig. 1. System architecture

third function, the FE maintains a long-lived TCP connection
to the HTTP server of the OpenStack load balancer. When the
number of incoming attach requests per worker goes above or
below a certain threshold, the FE sends an HTTP request to
the load balancer for the creation or deletion of a worker.

B. Worker

The worker represents the actual functionality of the MME
and handles the processing of call flows. Each worker main-
tains two separate interfaces towards the FE, one for S1AP
messaging and the other for GTP messaging. The Home
Subscriber Server is implemented as a MySQL database and
is co-located with the worker. Thus, the S6a interface is not
realised. We implement and test only the E-UTRAN initial
attach and explicit UE-initiated detach procedures specified
in [11]. In order to make the workers stateless, we introduce
additional messages to store the UE context on the state
database. Communication between a worker and the state
database occurs over a TCP connection and the UE context is
saved at the end of a call flow. Storing the UE context at each
step in the call flow can help to increase the resilience of the
MME. However, this leads to increased CPU utilisation and
network overhead with external database queries. By choosing
to store UE context at the end of a call flow, there is a trade-
off between low latency (with fewer database operations) and
decreased resilience.

C. State database

The state database stores state information for each UE
attached to the MME. We choose Redis [12] to implement the
state database. The in-memory feature of Redis ensures that
it operates with very low latency. We use the Redis cluster
feature to shard the data over three VMs. The UE context is
stored as a key-value pair. The key is the MME UE S1AP ID
and the value is the UE context in binary format. Furthermore,
Redis offers various persistence policies to enable recovery of
the stored data in case of a Redis server failure.

IV. EXPERIMENTAL EVALUATION

This section describes the testbed used and presents the
results of the experiments performed.



VMs

OpenStack shared services

MME FE
MME

worker

State DB 

(x3)

SGW+

PGW
eNodeB

OpenStack shared services

MME

worker

MME

worker

. . . MME

worker

OpenStack load balancer

VMs

Standard hardware Standard hardware

Fig. 2. Overview of the testbed

A. Testbed setup

Our testbed consists of two OpenStack [13] clouds running
the Icehouse release 2014.1.3. Each OpenStack cloud consists
of four identical blade servers. Two servers are used as
compute hosts on which VMs are run. The compute hosts
use the Kernel-based Virtual Machine (KVM) hypervisor. The
OpenStack controller runs on the third server. The fourth
server is used for deploying networking services with an
Open vSwitch virtual switch. Our test environment consists of
VLAN-based virtual networks which allows us to separate the
traffic within the VMs deployed in the testbed. Fig. 2 shows
the architecture of the testbed. We deploy the following VMs
on the testbed:

• FE. The FE of the distributed vMME is deployed on
one VM and contains EPC-specific configurations for the
MME.

• Worker. Each MME worker is deployed on a separate
VM and configured to connect to the FE. Workers can
be deployed on either OpenStack cloud.

• State database. The state database consists of three Redis
servers, each on a different VM, configured as a cluster
of three master nodes. Redis 3.0.1 is used on all three
VMs.

• eNodeB. The eNodeB is a simple C program which
sequentially sends the messages needed to test the attach
and detach procedures.

• SGW and PGW. The nwEPC, an open source implemen-
tation of the gateways [14], is used to run a collocated
SGW and PGW on a VM.

• Standalone MME. The MME developed in [10] repre-
sents the original standalone MME and is deployed on a
VM (not shown in the figure).

B. Experimental Results

We compare the performance of the distributed vMME
to that of the original standalone vMME. The experiments
performed and the results obtained are presented below:

1) Attach latency: The attach latency is measured as the
time elapsed between the eNodeB sending an Attach Request
and receiving an Attach Accept. We run this experiment for
both the distributed and standalone vMMEs to compare their
average latency. Each experiment consists of attaching 50 UEs
sequentially. The latency calculated is the average of results
obtained from running five sets of experiments. Table I shows

the average value of the measured attach latency. The increase
in attach latency for the distributed vMME is 4.4 milliseconds
on average. This occurs because each message exchanged
between the worker and an external network element has to
be forwarded through the FE.

We further measure the attach latency for different place-
ments of FE and workers. The following placement configu-
rations are used:

a) Worker and FE on different OpenStack clouds;
b) Worker and FE on the same compute host in the same

OpenStack cloud;
c) Worker and FE on different compute hosts in the same

OpenStack cloud

Fig. 3 shows the cumulative distribution function (CDF) of
the measured attach latency and Table II shows the average
attach latency for the three different placement configurations.
The measured latency for case (b) wherein the FE and worker
are on the same compute host shows the lowest average value
of 12.368 milliseconds. In this configuration the lowest latency
measured is 6.394 milliseconds, whereas the maximum latency
shows a ten-fold increase to 65.553 milliseconds. Similar
outliers are seen in further experiments with this placement
configuration (not reported in this paper). The lower average
value for this configuration can be attributed to the networking
setup on OpenStack, wherein communication between VMs
co-located on the same compute host occur locally and need
not be sent to the networking host [15]. However, these local
communications can increase CPU and memory overhead
making the runtime effects hard to predict and possibly
leading to performance degradation [15]. For VMs on different
compute hosts, the latency increases with a more predictable
trend. The distributions of attach latency for cases (a) and (c),
wherein the FE and worker are on different compute hosts,
are quite similar. The maximum measured attach latency does
not exceed 25 milliseconds in both cases.

2) UE context retrieval time: We compare the time taken
to retrieve UE context in the distributed vMME to that taken

TABLE I. AVERAGE OF ATTACH LATENCY FOR STANDALONE AND
DISTRIBUTED VMME

vMME type Average latency 95% confidence interval
Standalone 8.399 ms ±0.563
Distributed 12.782 ms ±0.208



TABLE II. AVERAGE OF ATTACH LATENCY FOR PLACEMENT
CONFIGURATIONS OF FE AND WORKER

Placement Average latency 95% confidence interval
(a) 12.914 ms ±0.222
(b) 12.368 ms ±0.505
(c) 13.065 ms ±0.288

Attach latency (ms)

0 10 20 30 40 50 60 70

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

On different OpenStack

On the same OpenStack, same compute host

On the same OpenStack, different compute hosts

Fig. 3. CDF of attach latency for three different placement configurations
of FE and worker

by the standalone vMME. For the distributed vMME, the
measured value includes the time taken to send a request from
a worker over the network, execute the query on the Redis
server and receive the response from the same server. On the
standalone vMME, the UE context is stored in memory as
a C structure in a hash table. The time measured is simply
the retrieval time from the hash table. Table III presents the
average value of 250 retrievals. For the distributed vMME,
the main contributor to the measured time is the network
latency between the worker and Redis server. The time taken
for running the commands on the Redis server (monitored
using redis slowlog) is in the order of a few microseconds.

V. CONCLUSION AND FUTURE WORK

We have developed a working proof-of-concept implemen-
tation of a three-tier architecture for the MME. We have
identified that the network latency between the components of
the distributed vMME affects the attach latency. Furthermore,
the attach latency varies depending on the placement of the
VMs on the physical compute hosts. With an intelligent
orchestrator and placement algorithm, it is possible to deploy
the components of a distributed MME by taking into account

TABLE III. AVERAGE RETRIEVAL TIME FOR UE CONTEXT ON
STANDALONE AND DISTRIBUTED MME

vMME type Average time 95% confidence interval
Standalone 20.7 µs ±0.675
Distributed 1256.724 µs ±18.028

different considerations such as latency, resilience, networking
bandwidth and CPU interference. From the results presented
in this paper, we believe that the increase in latency is
offset by the benefits of scalability and resilience of the
vMME. However, the increased complexity of the architecture
demands careful software design and intelligent placement
of the components so as not to degrade performance of
the overall system. In the future, we plan to investigate the
effects of the Redis persistence policies on the attach latency.
Furthermore, in our current implementation, compute hosts
of both OpenStack clouds reside on the same rack server.
It will be interesting to evaluate the distributed vMME with
geographically distributed data centers or public clouds. Ad-
ditionally, we aim to investigate container-based virtualization
to reduce the current worker boot up times.

ACKNOWLEDGMENT

This work has been partially supported by the CELTIC-
Plus project C2012/2-5 SIGMONA. The information reflects
the consortium’s view, but the consortium is not liable for any
use that may be made of any of the information contained
therein.

REFERENCES

[1] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis,
and T. Magedanz, “EASE: EPC as a service to ease mobile core network
deployment over cloud,” Network, IEEE, vol. 29, no. 2, pp. 78–88, 2015.

[2] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2014-2019,” Cisco, White Paper, February 2015.

[3] T. Taleb and A. Kunz, “Machine type communications in 3gpp networks:
potential, challenges, and solutions,” Communications Magazine, IEEE,
vol. 50, no. 3, pp. 178–184, 2012.

[4] “MCN D4.1, Mobile Network Cloud Component Design, European
Commission, EU FP7 Mobile Cloud Networking public deliverable,”
November 2013.

[5] Y. Takano, A. Khan, M. Tamura, S. Iwashina, and T. Shimizu,
“Virtualization-Based Scaling Methods for Stateful Cellular Network
Nodes using Elastic Core Architecture,” in Cloud Computing Technology
and Science (CloudCom), 2014 IEEE 6th International Conference on.
IEEE, 2014, pp. 204–209.

[6] X. An, F. Pianese, I. Widjaja, and U. G. Acer, “dMME: Virtualizing
LTE mobility management,” in Local Computer Networks (LCN), 2011
IEEE 36th Conference on. IEEE, 2011, pp. 528–536.

[7] M. Tamura, T. Nakamura, T. Yamazaki, and Y. Moritani, “A study to
achieve high reliability and availability on core networks with network
virtualization,” NTT Docomo, Technical Journal, July 2013, online;
Accessed on 02.07.2015.

[8] “Project Clearwater,” http://www.projectclearwater.org/, online; Ac-
cessed on 02.07.2015.

[9] G. Carella, M. Corici, P. Crosta, P. Comi, T. M. Bohnert, A. A. Corici,
D. Vingarzan, and T. Magedanz, “Cloudified IP Multimedia Subsystem
(IMS) for Network Function Virtualization (NFV)-based architectures,”
in Computers and Communication (ISCC), 2014 IEEE Symposium on.
IEEE, 2014, pp. 1–6.

[10] V. F. Guasch, “LTE network Virtualisation,” Master’s thesis, Aalto
University School of Electrical Engineering, October 2013.

[11] 3GPP, “General Packet Radio Service (GPRS) enhancements for
Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access
(Release 12),” 3rd Generation Partnership Project (3GPP), TS 23.401,
December 2014.

[12] “Redis,” http://redis.io/.
[13] “OpenStack,” http://www.openstack.org/.
[14] “nwEPC - EPC SAE Gateway ,” http://sourceforge.net/projects/nwepc/,

online; Accessed on 02.06.2015.
[15] A. Corradi, M. Fanelli, and L. Foschini, “VM consolidation: A real

case based on OpenStack Cloud,” Future Generation Computer Systems,
vol. 32, pp. 118–127, 2014.

http://www.projectclearwater.org/
http://redis.io/
http://www.openstack.org/
http://sourceforge.net/projects/nwepc/

	Introduction
	Related Work
	Design and Implementation of the vMME
	Front End
	Worker
	State database

	Experimental Evaluation
	Testbed setup
	Experimental Results
	Attach latency
	UE context retrieval time


	Conclusion and Future Work
	References

