
Noname manuscript No.
(will be inserted by the editor)

Advances in Cloud Computing, Wireless
Communications and the Internet of Things

Gopika Premsankar · Mario Di Francesco

Received: date / Accepted: date

Abstract There is a growing amount of data generated by a variety of devices
of the Internet of Things (IoT). Sharing economy applications can leverage
such data to provide solutions of high societal impact. Several technologies
together enable the collaborative use of data through software services. This
chapter describes the key developments in these technological areas. In partic-
ular, it describes advances in cloud computing that have resulted in new soft-
ware architectures and deployment practices. Such improvements enable the
rapid creation and deployment of new services on the cloud. Next, it highlights
recent developments in wireless networks that allow heterogeneous devices to
connect and share information. Furthermore, this chapter describes how IoT
platforms are becoming interoperable, thus fostering collaborative access to
data from diverse devices. Finally, it elaborates on how the described tech-
nologies jointly enable new sharing economy solutions through a case study
on car sharing.

Keywords Internet of Things · IoT · cloud computing · mobile networks ·
LPWAN · LoRa

The original publication is available at www.springerlink.com DOI: https://doi.org/10.
1007/978-3-030-35032-1_6

1 Introduction

Several advances in the field of Information and Communications Technol-
ogy (ICT) have influenced how we are able to share our time, material and
skills [46]. Indeed, there are many examples of online sharing platforms such as

G. Premsankar
Department of Computer Science, School of Science, Aalto University, Finland
E-mail: gopika.premsankar@aalto.fi

M. Di Francesco
Department of Computer Science, School of Science, Aalto University, Finland
E-mail: mario.di.francesco@aalto.fi

https://doi.org/10.1007/978-3-030-35032-1_6
https://doi.org/10.1007/978-3-030-35032-1_6


2 Gopika Premsankar, Mario Di Francesco

Airbnb, Uber, marketplaces and food sharing applications. The success of these
applications depend on several factors. First, the ubiquitous availability of In-
ternet connectivity enables us to access such services everywhere and at any
time. Furthermore, the advent of new cloud computing service models enables
application developers to quickly deploy new services and functionality. The
economic barrier to entry has been lowered with the availability of pay-per-use,
on-demand computing and data storage resources. Now, we are witnessing an
increasing amount of machine-generated data from Internet of Things (IoT)
devices such as sensors, household appliances, wearable devices, vehicles and
much more. Indeed, sharing economy applications can make use of the wide
variety of data and enable sharing in a more immersive and collaborative
manner. The IoT enables new services that rely on seamless inter-operation
between home networks, neighborhood networks and global suppliers of goods
and services [35]. This chapter describes recent developments in the fields of
cloud computing (Section 2), wireless connectivity (Section 3) and IoT (Sec-
tion 4) that enable such new applications and services. Section 5 describes how
these technologies together enable a car sharing application. Finally, Section 6
provides some concluding remarks.

2 Cloud Computing

Traditionally, software applications were deployed on bare metal servers. De-
velopers typically had to invest in the infrastructure on which services were
deployed, and manage the hardware in addition to the application itself [36].
Furthermore, they had to overprovision their deployments, i.e., make more
computing resources available than required so as to meet the peak demand.
However, this resulted in under-utilizing the hardware when the demand is
low. The advent of virtualization enabled multiple virtualized servers (or in-
stances) to run on a single physical machine. The virtualized instances, also
known as Virtual Machines (VMs), run in isolation from each other and run
their own operating system. This resulted in the initial wave of cloud comput-
ing, wherein cloud providers manage large data centers while developers (or
service providers) deploy applications as VMs [31]. The main benefits of cloud
computing are the availability of an infinite amount of resources (computing,
network and storage) that can be used on-demand and released when no longer
required [36]. This allowed software developers and organizations the flexibil-
ity to start with a lower level of resources and scale them as required. This
also meant that computing resources could be treated as utility, which lowered
the barrier for innovative services as a large initial commitment of resources
was no longer required [48].

Cloud computing services are made available under different service mod-
els, described next.

– Infrastructure-as-a-Service (IaaS) allows the developers to deploy virtual-
ized instances, typically VMs, within which custom software can be run.



Title Suppressed Due to Excessive Length 3

Hypervisor

VM VM VM

Host hardware

Hypervisor

VM VM VM

Host hardware

Host OS

VM

Guest OS

Binaries/libraries

Application

Type 1 Type 2

(a) Hypervisor-based

Container engine

C
on

ta
in

er

Host hardware

Host OS

Container

Binaries/libraries

Application

C
on

ta
in

er

C
on

ta
in

er

(b) Container-based

Fig. 1: Architecture of virtualized instances ((a) VMs and (b) containers) and
host hardware.

In this paradigm, the end users manage the deployed instances including
the OS, storage and networking [50].

– Platform-as-a-Service (PaaS) allows the end user to deploy applications on
the cloud while the cloud provider manages the programming tools (soft-
ware libraries, language runtimes), networking, storage and OS. Typically,
the user controls the application settings and relies on the cloud provider
for maintaining the underlying infrastructure [50].

– Function-as-a-Service (FaaS) [23] is a new paradigm that allows end users
to deploy stateless functions on the cloud platform. The functions are ex-
ecuted only when explicitly invoked or triggered by an event (such as user
input or database changes). The platform itself takes care of executing the
functions and scaling them based on the demand. FaaS again relies on the
cloud provider for managing the infrastructure; however, it differs from
PaaS in that the functions are not billed when they are idle.

– Software-as-a-Service (SaaS) allows the end users to use applications pro-
vided by the cloud platform. The applications themselves are accessible
through a thin client interface such as a web browser or an application
programming interface (API). All aspects of the application and infras-
tructure are managed by the cloud provider [50].

2.1 Virtualization

Virtualization is the key enabler of cloud computing and its associated service
models. The two most popular virtualization technologies are hypervisor-based
and operating system-based (or container -based) virtualization.

Hypervisor-based virtualization

In hypervisor-based virtualization (Figure 1a), a software abstraction layer
called a virtual machine monitor (VMM) or hypervisor lies between the VMs
and the underlying physical hardware. The hypervisor manages the virtual
machines and has full control of system resources. It provides an environment



4 Gopika Premsankar, Mario Di Francesco

for execution that is identical to the underlying server [59]. The hypervisor
provides complete isolation between VMs and also from the underlying hard-
ware, thereby allowing multiple OSes to run at the same time. For instance,
it is possible to run a VM with Windows OS on top of a machine with a
Linux-based OS. There are two types of hypervisors: a type 1 or bare-metal
hypervisor runs directly on top of the host hardware, whereas a type 2 or
hosted hypervisor runs on top of the host OS. Examples of type 1 hypervisors
include Xen [24] and VMWare ESX [51], and those of type 2 include KVM [43]
and Oracle VirtualBox [75]. Hypervisor-based virtualization supports multi-
tenancy and provides excellent isolation between VMs; however, it introduces
an overhead that affects performance of the VMs [34,56]. Moreover, the time
taken to start a VM can be in the order of minutes as a complete OS needs to
be started.

Container-based virtualization

Container-based virtualization (Figure 1b) is a lightweight form of virtualiza-
tion that is becoming more prevalent on the cloud today [70]. This form of
virtualization does not rely on a hypervisor and uses the host OS kernel-level
features to provide isolation. Thus, virtualized instances (known as contain-
ers) do not need to run a separate OS [56]. Containers start faster than VMs
and generally achieve a better performance [34]. Linux containers is one of
the most popular implementations of this form of virtualization [34]. We refer
to Linux containers as containers from now on. Containers use the following
kernel features: namespaces and cgroups [34]. Namespaces provide isolation
between containers so that one container has no visibility of objects outside
it. Linux cgroups are used to limit the CPU and memory consumption of
containers.

For completeness, we also discuss Docker [13], a popular open source plat-
form for building, deploying and managing containers. Docker containers are
generally used for deploying applications1 instead of complete machines as de-
scribed earlier. Docker provides a set of tools that allows the simplified use of
container technology [55]. For instance, Docker packages the software appli-
cation and its dependencies into a standalone package called an image [12].
Containers can then be started or created from Docker images. Docker also
provides registries through which Docker images can be easily shared [55].
Finally, Docker simplifies application development by providing portability
between different machines, i.e., the same container can be run on different
machines while still exposing the same execution environment to the applica-
tion. Docker is being widely adopted by the software development community
and is being actively developed with contributions from the key IT players
such as Amazon, Microsoft and Google [55].

1 https://docs.docker.com/engine/faq/



Title Suppressed Due to Excessive Length 5

2.2 Application development on the cloud

The emergence of Docker containers has changed the way applications and
services are developed. Traditionally, software applications were written as
single standalone modules that contain all the logic required to run the ap-
plication [38]. However, such a monolithic architecture does not work as the
application size and complexity grows [54]. For instance, problems arise when
software bugs have to be traced in a large codebase. Furthermore, even small
changes in the application requires the complete application to be rebooted.
Finally, such an architecture cannot fully utilize the scaling benefits of the
cloud as the whole copy of the application instance needs to be created even
if only a single component of the application requires more CPU or memory.

Microservices

With the increasing adoption of Docker containers, a more cloud-native form of
architecture known as the microservice architecture emerged. In this approach,
applications are partitioned into smaller independent components (or microser-
vices), each performing some business logic [38]. Although Docker containers
were not created specifically for microservices, they present an ideal way for
deploying independent modules easily with low cost [52]. The microservices
themselves should be easy to understand and able to scale independently [38].
Communication between the microservices occur through network calls, typ-
ically using lightweight Representational State Transfer (REST) application
programming interfaces (APIs). There are several advantages with this ap-
proach as compared to a monolithic application [54]. First, the microservices
can be developed with different technology stacks if required. Second, the in-
dividual microservices can be scaled as required. This is especially useful when
different services have different requirements; for instance, some services may
be more CPU-intensive than others and thus, scaled out faster. Next, such
an architecture reduces the time required to deploy new services or function-
alities. For instance, a microservice can be deployed with few changes and
even rolled back if required without affecting other services. Finally, the func-
tionality provided by a microservice can be reused by other components for
different purposes. The many benefits listed above meant that several organi-
zations such as Netflix, SoundCloud and Amazon have successfully used this
architecture to build large-scale fault-tolerant systems. However, some of the
disadvantages of the microservice architecture arise from its distributed nature
and reliance on the network for service calls [54]. This requires careful design
of the microservices and a way to manage consistency between distributed
components.

Function-as-a-Service

Function-as-a-Service (FaaS ) is a relatively new extension of the microser-
vice architecture. As briefly discussed earlier, with FaaS applications are de-



6 Gopika Premsankar, Mario Di Francesco

composed into multiple independent stateless functions. FaaS is also known
as serverless computing as all operational concerns of the underlying infras-
tructure are abstracted away from the developers [65]. Again, the common
approach for deploying functions is to run them in containers. The serverless
platform itself takes care of executing the function and scaling it when re-
quired. Thus, software developers can concentrate on business logic and do
not have to manage scaling, function runtimes and lifecycles of virtualized in-
stances. Such an approach significantly reduces the time taken to develop and
deploy applications, which will result in more innovative services [65]. How-
ever, there are a few disadvantages with this approach. First, there can be
performance issues as functions (containers) are not running all the time. This
implies that a container may need to first start and then install application
dependencies before being able to respond to a request. Again, the distributed
nature of FaaS-based applications requires careful consideration of consistency
and network calls. Furthermore, as the FaaS approach is in a nascent stage,
carrying out end-to-end tests is difficult as tooling for development, manage-
ment and deployment are limited [65]. Finally, using a public cloud offering for
serverless functions implies that there are certain limitations on the duration of
function execution and supported language runtimes. However, there are sev-
eral open source serverless frameworks (Fission2, Kubeless3 and OpenFaas4)
that provide more flexibility in implementation.

Container orchestrators

Finally, we discuss the role of container orchestrators in application devel-
opment. The overall software application consisting of multiple Docker-based
microservices (or stateless functions) needs to be reliable, highly available and
scalable. Container orchestrators represent an automated mechanism to cre-
ate, manage and deploy distributed applications. Kubernetes [30] is one of the
most widely-used container orchestrators. It has radically helped to increase
the speed at which applications can be deployed due its features of immutabil-
ity, declarative configuration and online self-healing [40]. First, Kubernetes
relies on the immutable nature of Docker images. As described earlier, Docker
packages both the application and its dependencies into an image that can
be used to deploy the application. This greatly simplifies deployment; for in-
stance, if an error occurs, it is simply possible to roll back to the older image.
Second, Kubernetes uses a declarative configuration object: the developer only
has to specify the desired state of the system and Kubernetes ensures that the
desired state is fulfilled. An example of such a state is that the application
module needs three running replicas (or identical running instances). Such a
declarative approach is easy to understand as there is no ambiguity in the
specification of the desired state. Finally, Kubernetes takes all the necessary

2 https://fission.io
3 https://kubeless.io
4 https://www.openfaas.com



Title Suppressed Due to Excessive Length 7

Cloud Cloud 

REV 1.2

2011-08-08

____

REV 1.2

2011-08-08

____

REV 1.2

2011-08-08

____

REV 1.2

2011-08-08

____

La
te

nc
y 

Network 

Volume of data 

Network 

Edge computingCloud computing

Volume of data 

Fig. 2: The core concept of edge computing is to reduce latency of processing
and volume of data sent to the cloud5

steps to maintain the desired state through online self-healing. This implies
that it continuously monitors the state of the application and takes necessary
corrective action. For instance, if a running instance of the application goes
down, Kubernetes detects the change and brings up a new instance to main-
tain the desired state. Thus, Kubernetes abstracts away the operations tasks
from software developers and is designed to give developers velocity, efficiency
and agility [40].

2.3 Edge and fog computing

Edge [66] and fog [27] computing involve bringing cloud computing capabili-
ties closer to the end devices. The main objective is to efficiently process the
growing amount of data generated by Internet of Things (IoT) devices (de-
scribed in Section 4) such as smart meters, connected cars, home and building
automation systems. The number of such connections is expected to grow to
3.3 billion by 2021 [1]. Currently, the data from such devices are transferred to
the cloud to obtain a meaningful analysis. Indeed, the elastic and on-demand
nature of the cloud computing resources make it ideally suited for this purpose.
However, cloud computing resources are usually available in large data centers
located far away from the end devices generating the data. Thus, the large
volume of data sent places immense stress on the backhaul links to the cloud.
Moreover, there are several applications that require low-latency processing of

5 Image adapted from http://www.ntt.co.jp/news2014/1401e/140123a.html



8 Gopika Premsankar, Mario Di Francesco

the data, such as vehicular safety applications [62], virtual/augmented reality
applications [61] and real-time data analytics [67]. To address these issues,
computing resources are made available at the edge of the network, i.e., closer
to the end devices generating the data (Figure 2). This allows data to be
processed with very low latency and removes the need for data to be sent to
the distant cloud data centers. Moreover, such an approach addresses privacy
concerns by processing the data at the edge and removing private information
before sending to the cloud [67]. It is important to note that edge and fog
computing are expected to co-exist with cloud computing. Some long-term
forecasting and analytics can still be carried out on the cloud without having
to send all data to it.

Edge computing and fog computing differ in the approach to bring comput-
ing resources closer to the user. Edge computing relies on co-locating resource-
rich servers along with access points, i.e., one hop away from end devices [66,
62]. Multi-Access Edge Computing (previously known as Mobile-Edge Com-
puting) (MEC) follows this approach wherein software applications and cloud
computing capabilities are made available in the radio access network [4].
MEC servers are typically deployed at wireless base station sites. This ap-
proach is standardized by the European Telecommunications Standards In-
stitute (ETSI). Similarly, our previous work [62] considers the deployment
of edge devices for vehicular applications. This scenario assumes that access
points (called roadside units) deployed along the road are augmented with
computing resources. The cars send data (such as location, direction, speed)
every second to the roadside units; this data is processed immediately at the
edge and a response sent back to the car. Such processing includes predicting
whether collisions occur or deciding when autonomous vehicles can change
lanes. Thus, the latency of processing and sending the response is critical for
such applications. We demonstrate that even with a small amount of comput-
ing resources at the edge, such an approach is able to meet the computational
demands of vehicular applications in a city without having to send data to the
cloud.

On the other hand, fog computing utilizes the computing resources of het-
erogeneous devices, including the end devices themselves. For instance, the
authors in [26,41] describe a fog platform comprising of a diverse set of de-
vices, including edge routers, access points, set-top boxes and smartphones.
The OpenFog Consortium, an alliance of industrial companies and universi-
ties, has recently standardized the fog computing architecture [14]. In this
approach, the fog consists of multiple layers or tiers, each with different lev-
els of compute and storage resources. For instance, in a fog-based vehicular
application scenario, the cars themselves are fog computing nodes which can
process data on-board. The cars (fog nodes) can connect to other cars within
the same tier as well as to fog nodes in other tiers. This allows the devices
within a layer to carry out processing in case connectivity to the higher tier
goes down. Each tier provides additional processing, networking and storage
capabilities than the tier below it. Thus, data from each tier is aggregated and
sent up to the next layer. The next layer (above the cars) consists of roadside



Title Suppressed Due to Excessive Length 9

Cloud 

Vehicle Vehicle 
On-board 
devices 

Roadside 
sensors

ARR 5600

Core network
(Regional) 

Access routers
(Neighborhood)

Fog devices
(Building/street)

Fog devices
(End devices)

REV 1.2

2011-08-08

____
REV 1.2

2011-08-08

____

REV 1.2

2011-08-08

____

In
cr

ea
si

ng
 p

ro
ce

ss
in

g 
ca

pa
bi

lit
y

Fig. 3: The multi-tier architecture of the fog [14].

devices such as roadside access points or traffic cameras. The layers above
consist of neighborhood and regional fog tiers, each representing devices with
increased capability. The key feature of this architecture is that interactions
are possible between tiers as well as within the tier itself. Thus, the services
should be available even if connectivity between the tiers is temporarily not
available.

The approaches described above rely on virtualization to enable software
applications to run seamlessly across different devices [47,66]. Furthermore,
the cloud is still expected to play a role in managing the applications at scale.
Together they can enable applications that require very low latency while still
relying on the more resource-rich cloud for large-scale batch analytics.

3 Wireless connectivity

Today’s wireless networks provide ubiquitous Internet connectivity accessible
anywhere and at all times. The amount of Internet Protocol (IP) data han-
dled by wireless networks has increased by a factor of 100 between 2010 to
2018 [20]. This section focuses on long-range wireless communications, i.e.,
cellular (or mobile) networks as well as wireless connectivity solutions specific
to IoT devices.



10 Gopika Premsankar, Mario Di Francesco

3.1 Mobile networks

The demand for higher data rates and lower latencies are the driving forces
behind the evolution of mobile (or cellular) networks. There has been a tremen-
dous increase in data rates from second generation (2G) networks (the first to
allow mobile data access) to the current fourth generation (4G) networks, with
up to 100 Mbps supported today [74]. The adoption of mobile data was also
driven by attractive flat-rate pricing schemes and the availability of new smart-
phone devices with high-resolution screens and better user interfaces [49]. The
pervasive, always-on Internet connectivity has enabled users to access diverse
mobile services whenever they want. Indeed, it is hard to imagine the success
of taxi-sharing applications such as Uber without having a fast and reliable
mobile Internet connection.

The advancement in mobile Internet connectivity was made possible due
to improvements in the end-to-end network, comprising of the radio and the
core network. On the radio side, 2G systems known as Global Systems for
Mobile Communication (GSM) used a combined Frequency-Division Multi-
ple Access (FDMA)/Time-Division Multiple Access (TDMA) system [44]. In
such a system, the radio spectrum is divided into frequency sub-bands and
within each sub-band, time is divided into frames and slots. This network
supported mostly voice calls and very low data rate Internet. However, there
was a growing demand for high data rates required by multimedia communi-
cation. To meet this requirement, 3G networks relied on a different technique
known as Direct Sequence Wideband Code Division Multiple Access (DS-
WCDMA) within TDMA [44], wherein time slots are available on multiple
frequencies. This allowed for a growth in the capacity of mobile networks and
a data rate of up to 14 Mbps. As the demand for data services over mobile
networks increased, the next generation of networks, 4G Long Term Evolution
(LTE), introduced the orthogonal frequency division multiplexing (OFDMA)
technique [44]. In such a system, each mobile node is allocated time slots in
one or more radio channel frequencies. The OFDMA technique ensures that
interference between signals sent on different frequencies is minimal. Along
with other innovations in the radio network, the capacity of such networks
increased tremendously and the maximum data rate increased to 100 Mbps in
the downlink and 50 Mbps in the uplink [44].

At the same time, the core network has evolved from circuit-switched net-
works to the current packet-switched Evolved Packet System (EPS). Packet
switched networks were introduced in 2G networks and removed the need for
dedicated end-to-end circuit-switched connections. The current 4G EPS net-
works are completely IP-based; this allows for fewer protocol conversions and
thus a higher performance [15]. This architecture also separated the control
plane and data plane elements. The control plane transports signaling messages
(related to mobility and management), whereas the data plane is responsible
for handling user data packets. The separation of these planes in the mobile
core network allows the network operators to scale the data plane and control
plane elements independently and better meet the demands of end users.



Title Suppressed Due to Excessive Length 11

The next step in the evolution of mobile networks, i.e. the fifth genera-
tion (5G), is expected to support a growing amount of data from mobile and
Internet of Things (IoT) devices with low latency communication. Specifi-
cally, 5G networks will incorporate technologies needed for low latency, energy-
efficient and reliable communications from heterogeneous devices. In the radio
network, modification of the radio frame structure, millimeter wave [20] and
non-orthogonal multiple access (NOMA) [58] are among the key features pro-
posed. NOMA achieves better spectral efficiency than before by allowing mul-
tiple users to share the same radio resources (frequency, timeslots and spread-
ing code). Furthermore, the use of a different mmWave spectrum (30-300 GHz
range) supports massive bandwidth and ultra-low latency applications such as
virtual and augmented reality [20,58].

Another interesting development is the softwarization of the network through
Network Function Virtualization (NFV) [33] and Software Defined Network-
ing (SDN) [57]. Currently the mobile core network consists of proprietary
hardware designed to meet the high performance requirements of such net-
works [60]. This implies that mobile network operators need to dimension
their networks and plan for peak loads as upgrading of such infrastructure
is expensive and slow. NFV utilizes the virtualization techniques described
in Section 2.1 to enable the deployment of mobile network elements as soft-
ware modules on general-purpose hardware [33]. This technique brings the
benefits of cloud computing, namely scalability and reduced expenses, to the
core network. The core elements can be scaled out or in depending on the
actual demand. Furthermore, NFV aims to bring new innovative services to
the mobile network as software-based deployments have a shorter deploy cycle
than hardware-based implementations. Finally, as the elements are deployed
as virtualized instances, they can be dynamically moved to the location most
suitable for low-latency communication [71].

SDN involves the virtualization of networking itself [42] and is complemen-
tary to NFV. The main features of SDN are: the separation of the control and
data plane, centralized network intelligence at a programmable controller, and
standardized application programming interfaces (APIs) [57,42]. By separat-
ing the control plane from the data plane, the complexity of network devices
such as switches are greatly simplified. The devices only need to receive in-
structions from the central SDN controller and forward data packets based on
these instructions. The centralized controller allows network operators to have
an overview of the entire network. Programs running on the SDN controller
can make real-time changes to any part of the network. Finally, the standard-
ized APIs abstract away the networking infrastructure from the applications.
The APIs also enable the management of devices from multiple vendors.

SDN and NFV together enable the flexible management and programming
of complex networks. These technologies make it easier for network operators
to react to changes in the network. Furthermore, the time to deploy services
is considerably reduced from hardware-based implementations.

5G networks are expected to support several new applications and ser-
vices [18]. For instance, multiple person video communication is expected to



12 Gopika Premsankar, Mario Di Francesco

become pervasive. This will enable collaboration at a scale not seen before.
This will be further enhanced by the support for augmented and virtual re-
ality. Sensor- and user-generated data can be used to replicate the movement
and gestures of people from a physical setting to a virtual one [61]. Further-
more, applications that rely on tactile signals and haptic feedback will become
reality with the low latency communication offered by 5G networks. In the
core network, edge computing (described in Section 2.3) has been proposed
to move computing closer to the end user and thereby meet the low latency
requirements of such applications. This will allow remote control of machinery
and robots, thereby enabling applications in remote health care as well.

3.2 Low Power Wide Area Networks

Low power wide area networks (LPWANs) are a class of networks specifically
targeted for resource constrained and battery-powered IoT devices. Such net-
works offer low power, long range connectivity (in the range of kilometers)
and support only low data rates. Thus, LPWANs are highly suited for smart
city and machine-to-machine applications, including smart metering, smart
grid and agricultural monitoring [64,22]. They support a class of applications
and devices that cannot be otherwise served by existing wireless technologies.
For instance, mobile networks (described in Section 3.1) are not energy effi-
cient as they require much more complex processing on the end devices [64].
Moreover, this increased complexity would increase the cost of end devices.
On the other hand, LPWANs promise a battery lifetime of ten years and a
communication range of several kilometers [64]. It is important to note that
these technologies are designed for a specific class of applications that require
only low data rates (in the range of kilobits per second) and can tolerate some
latency in communication [64]. This section describes the following LPWAN
technologies: LoRa [68,45], narrowband-IoT [63] and Sigfox [9].

LoRa networks consist of two main components, LoRa and LoRaWAN. LoRa
refers to the proprietary physical layer developed by Semtech [68], whereas Lo-
RaWAN [45] corresponds to the medium access control (MAC) and network
layers of the protocol stack. The physical layer achieves long distance commu-
nication by using the chirp spread spectrum modulation technique, wherein the
signal is encoded into chirp pulses spread over a wide spectrum [64]. Chirp
pulses can go from low to high frequencies (up-chirp) or vice-versa (down-
chirp) over time. This modulation technique makes the signal robust to in-
terference from other transmissions. This is very useful as LoRa operates in
the unlicensed sub-GHz band. Each LoRa transmission can be configured with
the following parameters: carrier frequency, bandwidth, coding rate, spreading
factor and transmission power [32]. These parameters affect the communica-
tion range, the data rate and the occurrence of collisions. Thus, it is possible
to assign the parameters in such a way to minimize collisions between trans-
missions. For instance, LoRaWAN specifies an Adaptive Data Rate (ADR)



Title Suppressed Due to Excessive Length 13

algorithm that dynamically manages the communication parameters to in-
crease the capacity of the network and maximize the battery life of the end
devices [69]. LoRaWAN also specifies the architecture of LoRa networks. The
end devices or LoRa nodes communicate with gateways over the LoRa physical
layer. Gateways simply relay the messages received from the nodes to a central
network server. Nodes are not associated with a single gateway; this implies
that gateways can receive and process messages from all nodes within its com-
munication range. The network server manages the network and further sends
the messages to the required application server. Such an architecture allows to
increase the capacity of the network by increasing the number of gateways [64].
For instance, The Things Network [73] (TTN) is an open, community-driven
LoRa network which allows the general public to place gateways of their own
and thereby expand coverage. TTN itself provides the network server and
the means to integrate applications to the network. Such a community-driven
network allows end users to develop applications that can use the coverage
provided by deployed gateways. Moreover, several mobile network operators
(such as KPN, Orange, Swisscom, Softbank and others) have started deploy-
ing LoRaWAN networks to meet the growing demand for services that rely on
such networks [53].

Narrowband-IoT (NB-IoT) is standardized by the 3GPP and is based on the
LTE technology (described in Section 3.1). It operates in the licensed radio
spectrum and thus will be available through telecom service providers. Further-
more, there are no duty cycle restrictions as the spectrum is licensed. In con-
trast to LoRa, NB-IoT uses the narrowband modulation technique, wherein the
signal is encoded in a low bandwidth which also minimizes the noise level [64].
This technique also ensures that the spectrum is efficiently utilized by all
the links. NB-IoT reuses several concepts from LTE including the frequency-
division multiple access (FDMA). This implies that the end device needs to
synchronize to the carrier frequency. Thus, the complexity of devices increases
as compared to LoRa. However, this also implies that NB-IoT can ensure a
higher quality of service (QoS) and lower communication latency than LoRa.
At the time of writing there are 58 commercial networks6 that use NB-IoT.

Sigfox is an LPWAN solution provider that operates its eponymous network
based on a proprietary technology [9]. Sigfox networks use the ultra narrow-
band modulation technique, wherein the signal is encoded into a very narrow
bandwidth (of less than 100 Hz) [64]. This reduces the amount of noise re-
sulting in higher receiver sensitivity and thus, long distance communication.
However, this is achieved at the expense of the data rate which is limited to
100 bps [64]. The devices communicate with proprietary Sigfox base stations
using a random access MAC protocol and thus devices are not complex. Sigfox
networks are deployed in partnership with other service providers (including

6 https://www.gsma.com/iot/mobile-iot-commercial-launches/



14 Gopika Premsankar, Mario Di Francesco

telecommunication service providers) and 62 countries7 are expected to be
covered by the end of 2018.

Each LPWAN solution has its own modulation scheme and relies on a
separate network architecture. However, the goals of each network is similar:
to provide low-cost, long-range, low-power network connectivity to resource
constrained devices. The value of connecting these devices to the network will
be more apparent from the discussion in the next section.

4 Internet of Things

The Internet of Things (IoT) comprises of billions of Internet-connected de-
vices equipped with sensors and actuators that are able to interact and coop-
erate with each other to achieve a common goal [21]. Indeed, we already see
examples of the IoT today: RFID sensor-based tracking of shipments, routing
of vehicles based on GPS data and real-time control of home devices through
home assistants [76]. The rapid increase in the number of deployed devices is
due to the availability of more efficient and low cost IoT devices, improved
wireless connectivity (described in Section 3) as well as advances in the cloud
(described in Section 2).

4.1 IoT devices

The devices forming the IoT can range from low-cost, low-complexity devices
such as temperature/humidity sensors to full-fledged connected cars equipped
with sophisticated sensors. This section highlights the main features of the
IoT devices [39,17,19]. One of the most important features is that the device
can sense its environment and collect measurements. Examples of these mea-
surements include temperature, humidity, pressure, location, motion, light and
sound. An on-board sensor can measure the data and convert it to a machine-
friendly, digital representation. Certain devices are also equipped with actu-
ators, i.e., components that produce a physical effect (such as motion or an
electromechanical signal) in response to an input. A processing unit (such as
a microcontroller, microprocessor, CPU, FPGA, etc.) handles several tasks,
including processing sensed data and managing the remaining systems on the
device. The capability of the processing unit depends on the requirements of
the specific IoT application. Next, the device should be able to communicate
to other devices or a network gateway or controller. Thus, the device typi-
cally contains a wireless transceiver for the chosen connectivity option. Again,
here, the choice of connectivity standard depends on the requirements of the
application. Finally, the device needs a power source to be able to function.
Typically, the devices are battery-powered; but they can sometimes scavenge
energy from other sources such as solar cells [19].

7 https://www.sigfox.com/en/coverage/become-so



Title Suppressed Due to Excessive Length 15

The growing availability of low-cost, low-power devices is leading to the per-
vasive deployment of IoT devices [16,39]. For instance, micro-electro-mechanical
systems (MEMS) are an attractive method to package sensors and actuators
as they can integrate these elements on a very small scale at low costs. Thus,
sensors can be easily added to everyday objects. Moreover, the on-board pro-
cessors are getting more powerful while simultaneously becoming smaller. Fi-
nally, the power consumption of such devices are further reduced when using
IoT-specific connectivity options such as LoRa.

4.2 Connecting IoT devices

Next, we discuss how IoT devices communicate with each other or to the
network. We have already discussed the available physical layer protocols in
Section 3. Above this, there are several options for networking and transport
protocols designed for IoT devices. At the network layer, IoT devices typically
rely on the Internet Protocol (IP) and specifically the IPv6 protocol for net-
working [39]. However, there are several practical concerns to this approach
especially for resource-constrained devices and unreliable wireless networks.
For instance, some devices may not have sufficient energy resources (being
battery-operated) to run the whole IP networking stack. Furthermore, some
wireless networks such as LPWANs can have high latency and packet losses. In
such scenarios, an IoT gateway acts as an intermediary on the communication
path between the device and the application [39,72]. These gateways translate
non-IP packets from the devices to IP-based packets that can be sent to the
application server. To this end, the Internet Engineering Task Force (IETF),
an Internet standards organization, has developed standardized protocols to
incorporate the resource-constrained non-IP devices into an IP-based network.
The interested reader can refer to the IETF working groups8 (6lo, 6tisch, lp-
wan, ipwave) for the specifics of the protocols for IoT networks.

At the transport layer, IoT networks may use either the Transmission Con-
trol Protocol (TCP) or User Datagram Protocol (UDP) [39]. The choice of the
protocol depends on both the upper and lower layers of the networking stack
as well as the capability of the devices. TCP ensures reliable communica-
tion through a connection-oriented scheme (a session is established between
the sender and receiver) and several error correction mechanisms including
retransmission of packets. On the other hand, UDP is a connectionless pro-
tocol wherein data packets are sent between sender and receiver without er-
ror control. Next, at the application layer, there are several options, including
generic web-based HTTP protocols, existing messaging protocols (XMPP) and
more lightweight IoT-specific protocols such as CoAP and MQTT. CoAP and
MQTT aim to support messaging for resource-constrained devices that may
operate in networks with packet loss and low bandwidth [17]. A detailed de-
scription of application protocols is available in [17,39]. Again, the choice of

8 https://datatracker.ietf.org/wg/



16 Gopika Premsankar, Mario Di Francesco

protocol relies on the requirements of the specific application and capability
of the devices.

4.3 Inter-operating networks

The growing availability of smart, connected IoT devices has resulted in their
rapid adoption in several areas, such as smart homes, industrial settings and
transportation. The discussion above highlights the variety of communication
protocols, which are decided based on the device capability and application
requirements. Thus, the IoT solutions usually operate in their own vertical si-
los with specific communication protocols for the domain they operate in [25,
29]. Although such IoT solutions bring tremendous benefits within the partic-
ular area of operation, they do not meet the original vision of smart devices
being able to cooperate with each other to meet a common goal. For instance,
consider a scenario wherein IoT devices are deployed at bus stops across a
city. These devices can detect the number of people currently waiting for a
bus. This data can be used by the public transport provider to send more
buses when there is a surge in demand. A truly IoT solution would also allow
this data to be accessed by different services, such as a registered car pooling
service that can also serve this demand. Such a scenario requires that devices
can be seamlessly discovered and their sensed data accessed across different
domains and architectures [72].

There are several approaches for the discovery of IoT devices. They can
categorized into three main categories [10,28]. One class relies on small- or
medium-range wireless communication for discovering devices nearby. For in-
stance, Google and Apple both use Bluetooth Low Energy for their UriBeacon
(now part of the Eddystone project) and iBeacon projects that enable devices
to discover and interact with each other. A second category of discovery re-
lies on searching for device endpoints in a network. For instance, multicast
DNS 9 (mDNS) is a distributed version of DNS service discovery (DNS-SD)
that translates the IoT service/host name to an IP address within small net-
works. Finally, a third category relies on querying of centralized directories and
thus scales to larger networks. The CoRE Resource Directory10 is an example
of such an approach. This approach allows services from other domains and
networks to discover resources based on attributes; for instance, all devices
matching a certain criteria (type or interface) can be listed by querying this
directory [72].

Another important aspect of interoperability is that the data should be
sent in a standardized format so that different applications and services can
extract useful information from it [17]. To this end, the IPSO Alliance [2], a
global body of multiple IoT companies, aims to enable IoT device interop-
erability by specifying open standards for semantics, security, device identity

9 https://www.ietf.org/rfc/rfc6762.txt
10 https://core-wg.github.io/rd-dns-sd/#resource-directories



Title Suppressed Due to Excessive Length 17

and other protocols. They have specified a data model known as Smart Ob-
jects [3] to describe IoT device resources. For instance, a temperature sensor
could be represented as 3300/0/5700 where 3300 represents that it’s a tem-
perature sensor, 0 represents the 0th instance of the sensor and 5700 refers
to the most recent reading. This abstraction allows the software application
to use simple APIs to access and read the IoT device resources. The model
is designed to work on top of any REST-based protocol. The Web of Things
Thing Description, a standard developed by the World Wide Web Consor-
tium (W3C), also describes a formal model for representing IoT devices [11].
In this model, device resources are typically represented in JSON-LD format
and different application layer protocols such as MQTT, CoAP and HTTP
are supported. A listing of other data models is available at [10]. Another ap-
proach relies on using a separate entity, i.e., a data broker, between the devices
and the application server [39]. The broker converts the data from multiple
devices to a common format that can be accessed by authorized applications.
Such an approach is suitable for non-IP based devices as well and where an
application protocol is not used.

The approaches highlighted above are a step towards achieving the goal
of inter-operable IoT networks that will further enable new and innovative
services.

5 Towards a sharing economy

The increasing maturity of cloud-based services, wireless connectivity solutions
and IoT devices creates a growing opportunity for data-driven solutions for
the sharing economy. Such solutions can have a societal impact through the
collaborative use of data from multiple providers, including individuals and
public or private organizations [37]. To this end, a cloud-based IoT platform
represents an ideal way to aggregate data from multiple sources and expose
this information to different service providers. There are several commercial
and open source IoT platforms available today [17]. OpenMTC [7] is a promi-
nent example of an open source platform built to enable shared data access
across several application domains. We briefly describe the key features of this
platform and how it enables sharing economy solutions.

5.1 OpenMTC

OpenMTC is an open source implementation of the standardized IoT plat-
form architecture by oneM2M11. The goal of such a platform is to provide a
horizontal layer for IoT devices from different domains (such as healthcare,

11 oneM2M (http://www.onem2m.org) is a global standards initiative comprising of eight
regional ICT standards organizations and over 200 companies.



18 Gopika Premsankar, Mario Di Francesco

transport and utilities) to communicate with the application layer. The plat-
form was released in 2012 and made open source in 2017. The architecture
follows a hierarchy of three layers, described next.

Application Entity (AE)

Network Service Entity (NSE)

Common Services Entity (CSE)

Device
management

Communication
management

Data 
management and

repository

Discovery

Application and
service layer
management 

Group
management Location Network service

exposure

Registration Security Service charging
and accounting

Subscription and
notification

Mcc interface

Mcn interface

Mca interface

Fig. 4: oneM2M entities.

– The application layer consists of application entities that implement the
service logic. Examples of such entities include applications to monitor
vehicle fleets or to track power consumption.

– The common services layer provides the core functionality of the platform
including data and device management, service subscription management,
discovery and others (illustrated in Figure 4). The functionality of each
entity is detailed in [5].

– The network services layer provides transport and connectivity services to
the devices connected to the platform.

The interfaces between the different layers (Mca, Mcn and Mcc) are also
standardized. Thus, the overall architecture is designed to be protocol-agnostic
and thereby support devices from different domains. A node in the OpenMTC
platform can implement one or more of the entities from the different layers
(described above) and expose standardized interfaces to other nodes in the net-
work. The gateway and backend are the main components of the OpenMTC
platform. The gateway interconnects devices from different domains. Protocol
adapters are used to provide inter-connectivity with other IoT platforms. Fur-
thermore, the platform provides a software development kit (SDK) to allow
application developers to write applications compliant with oneM2M [8]. The
source code of all components are available at [8] along with the respective
Docker images.



Title Suppressed Due to Excessive Length 19

5.2 Case study: Car sharing

A car sharing service is ideally suited for urban users who prefer not to own a
car, but still have the convenience of using a car when required. When the user
needs a car, he/she simply goes to the nearest available shared car, unlocks
it and drives it to the preferred destination. The user then parks the car in a
designated spot and has to pay only for the duration of the trip. The success
of such a service depends on the seamless use of the cars with minimal user
intervention. This can be achieved by leveraging data from IoT devices and
other service providers (such as insurance companies). The following discussion
is based on the oneM2M specification [6], which describes how IoT platforms
(such as OpenMTC) can enable car sharing applications.

Cars today are equipped with a variety of sensors, including door control
sensors, tire pressure sensors, fuel level sensors and GPS. The rich set of data
from these sensors can be used to automate and simplify the process of utiliz-
ing shared cars for the end user. Sensor data is communicated to a cloud-based
IoT platform via a smartphone which acts as the gateway. Other devices such
as access points deployed along the road [62] can also behave as gateways. How-
ever, it is feasible to offer the car sharing service as a smartphone application
and thus, the phone can behave as a gateway. Furthermore, the smartphone
itself has additional sensors that can provide useful data, for instance, for nav-
igation. The IoT platform collects the status and configuration information
from the vehicles as well as the service providers. Service providers include the
car sharing provider itself, insurance companies and gas stations. Providers
are assumed to have an agreement to provide a unified service.

Figure 5 illustrates how the data from multiple sources can be exchanged
for a car sharing service takes place.

1. First, the service provider applications register to the IoT platform. Each ap-
plication subscribes to the specific information it requires. Such a subscription
allows the service provider application to monitor updates or changes to the
subscribed information. Examples of such information include location, health
and fuel status of the car. This step also requires the IoT platform to ensure
that only authorized applications are granted access to the information.

2. When a user intends to use a shared car, he/she obtains the location of the
nearest available car from the smartphone application.

3. Next, he/she proceeds to the nearest car (pointed to by the application),
opens the car door and starts the car through the application. The smartphone
can interact with the car through Bluetooth or NFC. The application ensures
that the user has a valid subscription and is authorized to use the car. The
car’s on-board sensors report that the car is in use to the IoT platform via the
smartphone (or gateway).

4. The IoT platform communicates the status of the car as occupied to the
backend of the car sharing application. This status update can be used to
trigger an update to the front-end smartphone application or website to mark



20 Gopika Premsankar, Mario Di Francesco

On-board
sensors

Smartphone/
gateway IoT platform

Car sharing
app backend

Insurance 
company Gas station

1. Subscribe

2. Get nearest available car

3. Status update: car in use
4. Notification

5. Periodic status update
6. Notification(Location, car health)

7. Emergency status update
8. Notification(Location, low fuel)

9. Route information10. Route information

11. Status update
(Payment) 12. Notification

13. Status update
(Low battery)

14. Configuration update

15. Status update: car not in use
16. Notification

Configuration update

17. Insurance fee information
18. Notification

Fig. 5: Information flow for a car sharing application.

the car as unavailable to other users. The insurance provider is also informed
of the status of the car.

5-6. The car periodically reports its status – including location, fuel status and
health – to the IoT platform. The IoT platform reports the information to the
applications subscribed to the particular data.

7-8. In case of an emergency, for instance, if the fuel is low, the car sends an up-
date with an “urgent” status. This ensures that the IoT platform immediately
notifies the car sharing backend application.

9-10. The backend application computes the location of the nearest gas station
(with which it has a service agreement) based on the most recent location
of the car. The application then communicates the route to the nearest gas
station to the IoT platform, which relays this to the smartphone.

10. At the gas station, the user can make the payment through the smart-
phone’s NFC interface. The car sharing application also sends a status update
to the IoT platform.

11-12. The IoT platform communicates the payment details to both the car
sharing backend and the gas station provider. This step could also allow the
car sharing provider to directly make the payment to the gas station without
having the user to pay.

13. Next, the smartphone reports its low battery status to the IoT platform.



Title Suppressed Due to Excessive Length 21

14. The IoT platform changes the configuration of the status updates to mini-
mize battery usage. For example, the platform can increase the time interval
between status updates or configure only urgent notifications to be sent. The
platform then informs both the smartphone and the car sharing backend ap-
plication of the new configuration.

15-16. When the user arrives at the destination, the user stops the car and
turns off the ignition. All backlog data (if the configuration was changed) is
reported to the IoT platform along with the notification that the car is no
longer in use. The platform, in turn, notifies the backend application and the
insurance provider.

17-18. The insurance provider application sends a message containing the in-
surance fee information to the IoT platform, which is then communicated to
the car sharing application backend.

6 Conclusion

This chapter reviewed the major developments in cloud computing, wireless
connectivity and IoT in the context of collaborative consumption. First, cloud
computing has significantly lowered the economic barrier for deploying soft-
ware applications. The software development process is further simplified by
the growing popularity of Docker-based microservices and stateless functions.
This in turn results in faster time to market for new services. Next, improve-
ments in wireless connectivity have resulted in the ubiquitous availability of
Internet connectivity. Low power wireless solutions specific to IoT devices have
also emerged in the past few years. This allows a large number of low-cost IoT
devices to connect to the network and share their sensed data. Thus, new shar-
ing economy solutions can utilize the large volume of data from a diverse set
of IoT devices to provide services in an automated and collaborative manner.
Furthermore, edge and fog computing are expected to support a new class of
applications that require processing of data with a very low latency.

References

1. Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2016–2021 White Paper. http://www.cisco.com/c/en/us/

solutions/collateral/service-provider/visual-networking-index-vni/

mobile-white-paper-c11-520862.pdf. (Accessed on 16/07/2018)
2. IPSO Smart Objects. https://www.omaspecworks.org/develop-with-oma-specworks/

ipso-smart-objects/. Online; accessed 23.07.2018
3. IPSO Smart Objects. https://github.com/IPSO-Alliance/pub. Online; accessed

23.07.2018
4. Mobile-Edge Computing (MEC); Service Scenarios. https://www.etsi.org/

technologies-clusters/technologies/multi-access-edge-computing. (Accessed on
24/07/2018)

5. oneM2M Functional Architecture, ETSI Standard TS-0001-V3.11.0. http://www.

onem2m.org/technical/published-drafts. Online; accessed 07.08.2018
6. oneM2M Vehicular Domain Enablement, Draft Technical Report TR-0026-V4.1.0. http:

//www.onem2m.org/technical/published-drafts. Online; accessed 07.08.2018

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.omaspecworks.org/develop-with-oma-specworks/ipso-smart-objects/
https://www.omaspecworks.org/develop-with-oma-specworks/ipso-smart-objects/
https://github.com/IPSO-Alliance/pub
https://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing
https://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing
http://www.onem2m.org/technical/published-drafts
http://www.onem2m.org/technical/published-drafts
http://www.onem2m.org/technical/published-drafts
http://www.onem2m.org/technical/published-drafts


22 Gopika Premsankar, Mario Di Francesco

7. OpenMTC. http://www.open-mtc.org/index.html. Online; accessed 07.08.2018
8. OpenMTC. https://github.com/OpenMTC/OpenMTC. Online; accessed 08.08.2018
9. Sigfox. https://www.sigfox.com/en. Online; Accessed on 18.07.2018

10. Web of Things – Technology Landscape. http://w3c.github.io/wot/landscape.html.
Online; accessed 23.07.2018

11. Web of Things (WoT) Thing Description. https://www.w3.org/TR/

wot-thing-description/. Online; accessed 23.07.2018
12. What is a container? https://www.docker.com/what-container. (Accessed on

16/07/2018)
13. What is Docker? https://www.docker.com/what-docker. (Accessed on 16/07/2018)
14. Ieee approved draft standard for adoption of openfog reference architecture for fog

computing. IEEE P1934/D2.0, April 2018 pp. 1–175 (2018)
15. 3GPP: The Evolved Packet Core. http://www.3gpp.org/technologies/

keywords-acronyms/100-the-evolved-packet-core. Online; Accessed on 04.07.2018
16. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks:

a survey. Computer networks 38(4), 393–422 (2002)
17. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of

things: A survey on enabling technologies, protocols, and applications. IEEE Commu-
nications Surveys & Tutorials 17(4), 2347–2376 (2015)

18. Alliance, N.: 5g white paper. Next generation mobile networks, white paper pp. 1–125
(2015)

19. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless
sensor networks: A survey. Ad hoc networks 7(3), 537–568 (2009)

20. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C., Zhang, J.C.:
What will 5G be? IEEE Journal on selected areas in communications 32(6), 1065–1082
(2014)

21. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer networks
54(15), 2787–2805 (2010)

22. Augustin, A., Yi, J., Clausen, T., Townsley, W.M.: A study of LoRa: Long range & low
power networks for the internet of things. Sensors 16(9), 1466 (2016)

23. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.,
Muthusamy, V., Rabbah, R., Slominski, A., et al.: Serverless computing: Current trends
and open problems. In: Research Advances in Cloud Computing, pp. 1–20. Springer
(2017)

24. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS operating
systems review, vol. 37, pp. 164–177. ACM (2003)

25. Bello, O., Zeadally, S., Badra, M.: Network layer inter-operation of device-to-device
communication technologies in internet of things (iot). Ad Hoc Networks 57, 52–62
(2017)

26. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: A platform for Internet
of Things and analytics. In: Big Data and Internet of Things: A Roadmap for Smart
Environments, pp. 169–186. Springer (2014)

27. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet
of Things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud
computing, pp. 13–16. ACM (2012)

28. Bröring, A., Datta, S.K., Bonnet, C.: A categorization of discovery technologies for the
internet of things. In: Proceedings of the 6th International Conference on the Internet
of Things, pp. 131–139. ACM (2016)

29. Bröring, A., Schmid, S., Schindhelm, C.K., Khelil, A., Kabisch, S., Kramer, D.,
Le Phuoc, D., Mitic, J., Anicic, D., Teniente López, E.: Enabling iot ecosystems through
platform interoperability. IEEE software 34(1), 54–61 (2017)

30. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, Omega, and
Kubernetes. Queue 14(1), 10 (2016)

31. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation computer systems 25(6), 599–616 (2009)

http://www.open-mtc.org/index.html
https://github.com/OpenMTC/OpenMTC
https://www.sigfox.com/en
http://w3c.github.io/wot/landscape.html
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.docker.com/what-container
https://www.docker.com/what-docker
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core


Title Suppressed Due to Excessive Length 23

32. Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., Tinnirello, I.: Impact of lora
imperfect orthogonality: Analysis of link-level performance. IEEE Communications
Letters 22(4), 796–799 (2018)

33. ETSI: Network Functions Virtualisation - An Introduction, Benefits, Enablers, Chal-
lenges, Call for Action. Tech. rep. (2012)

34. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison
of virtual machines and linux containers. In: Performance Analysis of Systems and
Software (ISPASS), 2015 IEEE International Symposium On, pp. 171–172. IEEE (2015)

35. Fischer, J.E., Colley, J.A., Luger, E., Golembewski, M., Costanza, E., Ramchurn, S.D.,
Viller, S., Oakley, I., Froehlich, J.E.: New horizons for the iot in everyday life: proactive,
shared, sustainable. In: Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct, pp. 657–660. ACM (2016)

36. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin,
A., Stoica, I.: Above the clouds: A Berkeley view of cloud computing. Dept. Electrical
Eng. and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS 28(13),
2009 (2009)

37. Garćı, J.M., Fernández, P., Ruiz-Cortés, A., Dustdar, S., Toro, M.: Edge and cloud
pricing for the sharing economy. IEEE Internet Computing 21(2), 78–84 (2017). DOI
10.1109/MIC.2017.24

38. Garriga, M.: Towards a taxonomy of microservices architectures. In: A. Cerone,
M. Roveri (eds.) Software Engineering and Formal Methods, pp. 203–218. Springer
International Publishing, Cham (2018)

39. Hanes, D., Salgueiro, G., Grossetete, P., Barton, R., Henry, J.: IoT Fundamentals: Net-
working Technologies, Protocols, and Use Cases for the Internet of Things. Cisco Press
(2017)

40. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running: Dive Into the Future
of Infrastructure. ” O’Reilly Media, Inc.” (2017)

41. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile
fog: A programming model for large-scale applications on the internet of things. In:
Proceedings of the second ACM SIGCOMM workshop on Mobile cloud computing, pp.
15–20. ACM (2013)

42. Jain, R., Paul, S.: Network virtualization and software defined networking for cloud
computing: a survey. IEEE Communications Magazine 51(11), 24–31 (2013)

43. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux Virtual Machine
Monitor. In: Proceedings of the Linux symposium, vol. 1, pp. 225–230. Dttawa, Dntorio,
Canada (2007)

44. Kurose, J.F., Ross, K.W.: Computer networking: a top-down approach: international
edition. Pearson Higher Ed (2013)

45. LoRa Alliance: LoRaWAN Specification (V1.0.3). https://www.lora-alliance.org/

resource-hub/lorawantm-specification-v103 (2018). Online; Accessed on 18.07.2018
46. Malmborg, L., Light, A., Fitzpatrick, G., Bellotti, V., Brereton, M.: Designing for shar-

ing in local communities. In: Proceedings of the 33rd Annual ACM Conference Extended
Abstracts on Human Factors in Computing Systems, pp. 2357–2360. ACM (2015)

47. Maŕın-Tordera, E., Masip-Bruin, X., Garćıa-Almiñana, J., Jukan, A., Ren, G.J., Zhu,
J.: Do we all really know what a fog node is? current trends towards an open definition.
Computer Communications 109, 117–130 (2017)

48. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing—the
business perspective. Decision support systems 51(1), 176–189 (2011)

49. Mcqueen, D.: The momentum behind lte adoption [sgpp lte]. IEEE Communications
Magazine 47(2), 44–45 (2009)

50. Mell, P., Grance, T., et al.: The nist definition of cloud computing (2011)
51. Muller, A., Wilson, S.: Virtualization with VMware ESX server (2005)
52. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice architecture:

aligning principles, practices, and culture. ” O’Reilly Media, Inc.” (2016)
53. Navarro-Ortiz, J., Sendra, S., Ameigeiras, P., Lopez-Soler, J.M.: Integration of Lo-

RaWAN and 4G/5G for the Industrial Internet of Things. IEEE Communications
Magazine 56(2), 60–67 (2018)

54. Newman, S.: Building microservices: designing fine-grained systems. ” O’Reilly Media,
Inc.” (2015)

https://www.lora-alliance.org/resource-hub/lorawantm-specification-v103
https://www.lora-alliance.org/resource-hub/lorawantm-specification-v103


24 Gopika Premsankar, Mario Di Francesco

55. Nickoloff, J.: Docker in Action, 1st edn. Manning Publications Co., Greenwich, CT,
USA (2016)

56. Nider, J.: A comparison of virtualization technologies for use in cloud data centers. IBM
Research Report H-0330 (HAI1801-001) (2018)

57. ONF: Software-defined networking: The new norm for networks. ONF White Paper
(2012)

58. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A.I., Dai, H.: A survey on low latency
towards 5g: Ran, core network and caching solutions. IEEE Communications Surveys
& Tutorials (2018)

59. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation
architectures. Communications of the ACM 17(7), 412–421 (1974)

60. Premsankar, G., Ahokas, K., Luukkainen, S.: Design and implementation of a dis-
tributed mobility management entity on openstack. In: Cloud Computing Technology
and Science (CloudCom), 2015 IEEE 7th International Conference on, pp. 487–490.
IEEE (2015)

61. Premsankar, G., Di Francesco, M., Taleb, T.: Edge computing for the Internet of Things:
a case study. IEEE Internet of Things Journal 5(2), 1275–1284 (2018)

62. Premsankar, G., Ghaddar, B., Di Francesco, M., Verago, R.: Efficient placement of
edge computing devices for vehicular applications in smart cities. In: NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium. IEEE (2018)

63. Ratasuk, R., Mangalvedhe, N., Zhang, Y., Robert, M., Koskinen, J.P.: Overview of nar-
rowband iot in lte rel-13. In: Standards for Communications and Networking (CSCN),
2016 IEEE Conference on, pp. 1–7. IEEE (2016)

64. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low power wide area networks: An
overview. IEEE Communications Surveys & Tutorials (2017)

65. Roberts, M., Chapin, J.: What is Serverless?: understanding the latest advances in cloud
and service-based architecture. ” O’Reilly Media, Inc.” (2017)

66. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets
in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

67. Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Hu, W., Amos,
B.: Edge analytics in the Internet of Things. IEEE Pervasive Computing 14(2), 24–31
(2015)

68. Semtech: What is LoRa? https://www.semtech.com/technology/lora/what-is-lora.
Online; Accessed on 18.07.2018

69. Slabicki, M., Premsankar, G., Di Francesco, M.: Adaptive configuration of lora networks
for dense iot deployments. In: 16th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2018), pp. 1–9 (2018)

70. Strauss, D.: Containers–not virtual machines–are the future cloud. The Linux Journal
228, 118–123 (2013)

71. Taleb, T.: Toward carrier cloud: Potential, challenges, and solutions. Wireless Commu-
nications, IEEE 21(3), 80–91 (2014)

72. Tanganelli, G., Vallati, C., Mingozzi, E.: Edge-centric distributed discovery and access
in the internet of things. IEEE Internet of Things Journal 5(1), 425–438 (2018)

73. The Things Network: The Thing Network Mission. https://github.com/

TheThingsNetwork/Manifest/blob/master/Mission.md (2015). Online; accessed
18.07.2018

74. Wang, C.X., Haider, F., Gao, X., You, X.H., Yang, Y., Yuan, D., Aggoune, H., Haas, H.,
Fletcher, S., Hepsaydir, E.: Cellular architecture and key technologies for 5G wireless
communication networks. IEEE Communications Magazine 52(2), 122–130 (2014)

75. Watson, J.: Virtualbox: bits and bytes masquerading as machines. Linux Journal
2008(166), 1 (2008)

76. Woetzel, J., Remes, J., Boland, B., Lv, K., Sinha, S., Strube, G., Means, J., Law, J.,
Cadena, A., von der Tann, V.: Smart cities: digital solutions for a more livable future.
McKinsey Global Institute San Francisco (2018)

https://www.semtech.com/technology/lora/what-is-lora
https://github.com/TheThingsNetwork/Manifest/blob/master/Mission.md
https://github.com/TheThingsNetwork/Manifest/blob/master/Mission.md

	Introduction
	Cloud Computing
	Wireless connectivity
	Internet of Things
	Towards a sharing economy
	Conclusion

